Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).
Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).
Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).
Li, C. et al. Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019).
Pagiamtzis, K. & Sheikholeslami, A. Content-addressable memory (CAM) circuits and architectures: a tutorial and survey. IEEE J. Solid-State Circuits 41, 712–727 (2006).
McAuley, A. J. & Francis, P. Fast routing table lookup using CAMs. In Proc. IEEE INFOCOM ’93 The Conference on Computer Communications 1382–1391 (IEEE, 1993).
Chao, H. J. Next generation routers. Proc. IEEE 90, 1518–1558 (2002).
Allam, A. & Mahmoud, O. in Computer Memory and Data Storage (ed Azam, S.) Ch. 5 (IntechOpen, 2023).
Graves, C. E. et al. In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 32, 2003437 (2020).
Liu, X. et al. Analog content-addressable memory from complementary FeFETs. Device 2, 100218 (2024).
Yin, X. et al. Deep random forest with ferroelectric analog content addressable memory. Sci. Adv. 10, eadk8471 (2024).
Yin, X. et al. FeCAM: a universal compact digital and analog content addressable memory using ferroelectric. IEEE Trans. Electron Devices 67, 2785–2792 (2020).
Ni, K. et al. Ferroelectric ternary content-addressable memory for one-shot learning. Nat. Electron. 2, 521–529 (2019).
Li, C. et al. Analog content-addressable memories with memristors. Nat. Commun. 11, 1638 (2020).
Pedretti, G. et al. Tree-based machine learning performed in-memory with memristive analog CAM. Nat. Commun. 12, 5806 (2021).
Mao, R. et al. Experimentally validated memristive memory augmented neural network with efficient hashing and similarity search. Nat. Commun. 13, 6284 (2022).
Luo, J. et al. A novel ambipolar ferroelectric tunnel FinFET-based content-addressable memory with ultra-low hardware cost and high energy efficiency for machine learning. In Proc. 2022 IEEE Symposium on VLSI Technology and Circuits 226–227 (IEEE, 2022).
Qiu, H. et al. Two-dimensional materials for future information technology: status and prospects. Sci. China Inf. Sci. 67, 160400 (2024).
Lin, Y.-C. et al. Recent advances in 2D material theory, synthesis, properties, and applications. ACS Nano 17, 9694–9747 (2023).
Liu, L. et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021).
Yu, J. et al. Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat. Commun. 14, 5662 (2023).
Wu, L. et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 16, 882–887 (2021).
Jiang, Y. et al. A scalable integration process for ultrafast two-dimensional flash memory. Nat. Electron. 7, 868–875 (2024).
Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).
Liu, X., Choi, M. S., Hwang, E., Yoo, W. J. & Sun, J. Fermi level pinning dependent 2D semiconductor devices: challenges and prospects. Adv. Mater. 34, 2108425 (2022).
Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).
Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Gao, G. et al. Enabling highly efficient, low-latency analog CAM operations with optimized MoS2 flash memory devices. In Proc. 2025 9th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) 1–3 (IEEE, 2025).
Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).
Lu, Y.-C., Huang, J.-K., Chao, K.-Y., Li, L.-J. & Hu, V. P.-H. Projected performance of Si- and 2D-material-based SRAM circuits ranging from 16 nm to 1 nm technology nodes. Nat. Nanotechnol. 19, 1066–1072 (2024).
Agarwal, S. et al. Using floating-gate memory to train ideal accuracy neural networks. IEEE J. Explor. Solid-State Comput. Devices Circuits 5, 52–57 (2019).
Yabuuchi, M., Morimoto, M., Tsukamoto, Y. & Tanaka, S. A 7 nm FinFET 4.04-Mb mm−2 TCAM with improved electromigration reliability using far-side driving scheme and self-adjust reference match-line amplifier. In Proc. 2020 IEEE Symposium on VLSI Circuits 1–2 (IEEE, 2020).
Chang, M.-F. et al. 17.3 A 28 nm 256 kb 6T-SRAM with 280 mV improvement in Vmin using a dual-split-control assist scheme. In Proc. 2015 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers 1–3 (IEEE, 2015).
Chang, M. F. et al. A ReRAM-based 4T2R nonvolatile TCAM using RC-filtered stress-decoupled scheme for frequent-OFF instant-ON search engines used in IoT and big-data processing. IEEE J. Solid-State Circuits 51, 2786–2798 (2016).
Lin, C.-C. et al. 7.4 A 256 b-wordlength ReRAM-based TCAM with 1 ns search time and 14× improvement in wordlength–energy-efficiency–density product using 2.5T1R cell. In Proc. 2016 IEEE International Solid-State Circuits Conference (ISSCC) 136–137 (IEEE, 2016).
Yang, R. et al. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nat. Electron. 2, 108–114 (2019).
Lemke, C., Budka, M. & Gabrys, B. Metalearning: a survey of trends and technologies. Artif. Intell. Rev. 44, 117–130 (2015).
Vilalta, R. & Drissi, Y. A perspective view and survey of meta-learning. Artif. Intell. Rev. 18, 77–95 (2002).
Somvanshi, D. et al. Nature of carrier injection in metal/2D-semiconductor interface and its implications for the limits of contact resistance. Phys. Rev. B 96, 205423 (2017).
Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2017).
Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).
Cui, X. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).
Smithe, K. K. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).
Guimarães, M. H. D. et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016).
Cheng, Z. et al. Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19, 5077–5085 (2019).
McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).
Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).
Migliato Marega, G. et al. A large-scale integrated vector–matrix multiplication processor based on monolayer molybdenum disulfide memories. Nat. Electron. 6, 991–998 (2023).
Vu, Q. A. et al. A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29, 1703363 (2017).
Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016).
Zhang, E. et al. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 9, 612–619 (2015).
Migliato Marega, G. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).
Dodda, A., Trainor, N., Redwing, J. M. & Das, S. All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022).
