Basov, D., Fogler, M. & García de Abajo, F. Polaritons in van der Waals materials. Science 354, aag1992 (2016).
Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).
Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).
Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).
Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat. Commun. 15, 69 (2024).
Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).
Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).
Wei, H., Wang, Z., Tian, X., Käll, M. & Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011).
Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).
Li, P. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light. Sci. Appl. 7, 17172 (2018).
Dolado, I. et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).
Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).
Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).
Coles, D. M. et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712–719 (2014).
Wang, M., Hertzog, M. & Börjesson, K. Polariton-assisted excitation energy channeling in organic heterojunctions. Nat. Commun. 12, 1874 (2021).
Ruta, F. L. et al. Good plasmons in a bad metal. Science 387, 786–791 (2025).
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). This reference reports the real-space mapping of the hyperbolic phonon polaritons in van der Waals crystals of boron nitride.
Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).
Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). References 19 and 78 independently demonstrated real-space visualization of gate-tunable plasmon polaritons in graphene.
Ni, G. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).
Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).
Mester, L., Govyadinov, A. A., Chen, S., Goikoetxea, M. & Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020).
Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).
Hillenbrand, R., Abate, Y., Liu, M., Chen, X. & Basov, D. Visible-to-THz near-field nanoscopy. Nat. Rev. Mater. 10, 285–310 (2025).
Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).
Wang, H., Wang, L., Jakob, D. S. & Xu, X. G. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode. Nat. Commun. 9, 2005 (2018).
Li, Y. et al. Broadband near-infrared hyperbolic polaritons in MoOCl2. Nat. Commun. 16, 6172 (2025).
Liu, S.-F. et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 377, 1112–1116 (2022).
Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 Interface. Nano Lett. 11, 4701–4705 (2011).
Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).
Li, A. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).
Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).
Guan, F. et al. Overcoming losses in superlenses with synthetic waves of complex frequency. Science 381, 766–771 (2023).
Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). This reference reports the real-space imaging of hyperbolic polariton propagation along the surface of molybdenum trioxide, exhibiting ultra-confined wavelength (up to 60-times smaller than the corresponding photon wavelengths) and ultralong lifetime (about 8 ps).
Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).
Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020). References 30, 36, 39 and 40 independently demonstrated flattened polariton dispersion at thephotonic magic angle in twisted bilayers of molybdenum trioxide, exhibiting low-loss polariton canalization anddiffractionless propagation.
Herzig Sheinfux, H. & Koppens, F. H. The rise of twist-optics. Nano Lett. 20, 6935–6936 (2020).
Obst, M. et al. Terahertz twistoptics—engineering canalized phonon polaritons. ACS Nano 17, 19313–19322 (2023).
Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).
Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).
Duan, J. et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Sci. Adv. 7, eabf2690 (2021). This reference reports the observation of topological transition of polariton dispersion from hyperbolic (open along x direction) to hyperbolic (open along y direction) IFCs, yielding a ray-like propagation with linear-crossing IFCs.
Terán-García, E. et al. Real-space visualization of canalized ray polaritons in a single van der Waals thin slab. Nano Lett. 25, 2203–2209 (2025).
Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).
Shao, Y. et al. Infrared plasmons propagate through a hyperbolic nodal metal. Sci. Adv. 8, eadd6169 (2022).
Guo, P. et al. Hyperbolic dispersion arising from anisotropic excitons in two-dimensional perovskites. Phys. Rev. Lett. 121, 127401 (2018).
Ambrosio, A. et al. Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light. Sci. Appl. 7, 27 (2018).
Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).
Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).
Venturi, G., Mancini, A., Melchioni, N., Chiodini, S. & Ambrosio, A. Visible-frequency hyperbolic plasmon polaritons in a natural van der Waals crystal. Nat. Commun. 15, 9727 (2024).
Zhang, X. et al. Excitonic negative refraction mediated by magnetic orders. Preprint at Research Square (2024).
Rizzo, D. J. et al. Uniaxial plasmon polaritons via charge transfer at the graphene/CrSBr interface. Preprint at (2024).
Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).
Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).
Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).
Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).
F. Tresguerres-Mata, A. I. et al. Observation of naturally canalized phonon polaritons in LiV2O5 thin layers. Nat. Commun. 15, 2696 (2024).
Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der waals semiconductor α-MoO3 from near-and far-field correlative studies. Adv. Mater. 32, 1908176 (2020).
Duan, J. et al. Launching phonon polaritons by natural boron nitride wrinkles with modifiable dispersion by dielectric environments. Adv. Mater. 29, 1702494 (2017).
Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
Matson, J. et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 14, 5240 (2023).
Ermolaev, G. A. et al. Wandering principal optical axes in van der Waals triclinic materials. Nat. Commun. 15, 1552 (2024).
Duan, J. et al. Canalization-based super-resolution imaging using an individual van der Waals thin layer. Sci. Adv. 11, eads0569 (2025). This reference demonstrates a proof-of-concept application of polariton canalization: super-resolution nanoimaing (~λ0/220, with λ0 the wavelength of free-space light).
Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).
Chaudhary, K. et al. Polariton nanophotonics using phase-change materials. Nat. Commun. 10, 4487 (2019).
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305, 788–792 (2004).
Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007).
Zhang, S. et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009).
Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023). References 68 and 70 independently demonstrate in-plane and out-of-plane negative refraction of mid-infrared phonon polaritons at theinterface between van der Waals materials.
Lin, X. et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).
Sternbach, A. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).
Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).
Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).
Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023). This reference reports the observation of multiple spectrally robust photonic magic angles in reconfigurable twisted molybdenum trioxide trilayers, where polariton canalization can be programmed at will along any desired in-plane direction.
Zheng, C. et al. Hyperbolic-to-hyperbolic transition at exceptional Reststrahlen point in rare-earth oxyorthosilicates. Nat. Commun. 15, 7047 (2024).
Álvarez-Cuervo, J. et al. Unidirectional ray polaritons in twisted asymmetric stacks. Nat. Commun. 15, 9042 (2024).
Álvarez-Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).
Martín-Sánchez, J. et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Sci. Adv. 7, eabj0127 (2021).
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).
Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).
Álvarez-Pérez, G., Voronin, K. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).
Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).
Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).
Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).
Duan, J. et al. Active and passive tuning of ultranarrow resonances in polaritonic nanoantennas. Adv. Mater. 34, 2104954 (2022).
Lv, J. et al. Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes. Nat. Commun. 14, 3894 (2023).
Sunku, S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).
Lv, H. et al. Tailoring phonon polaritons with a single-layer photonics-empowered polaritonic crystal. Nano Lett. 12, 4946–4953 (2025).
Sun, T. et al. Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics. Nat. Nanotechnol. 19, 758–765 (2024).
Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).
Chen, M. et al. Van der Waals isotope heterostructures for engineering phonon polariton dispersions. Nat. Commun. 14, 4782 (2023).
Li, N. et al. Phonon transition across an isotopic interface. Nat. Commun. 14, 2382 (2023).
Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).
Zhao, Y. et al. Ultralow-loss phonon polaritons in the isotope-enriched α-MoO3. Nano Lett. 22, 10208–10215 (2022).
Wu, Y. et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun. 11, 2646 (2020).
Wu, Y. et al. Efficient and tunable reflection of phonon polaritons at built-in intercalation interfaces. Adv. Mater. 33, 2008070 (2021).
Shen, J. et al. Charge-transfer hyperbolic polaritons in α-MoO3/graphene heterostructures. Appl. Phys. Rev. 11, 021409 (2024).
Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Moore, S. et al. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat. Commun. 12, 5741 (2021).
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Ni, G. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).
Hesp, N. C. et al. Observation of interband collective excitations in twisted bilayer graphene. Nat. Phys. 17, 1162–1168 (2021).
Huang, T. et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature 605, 63–68 (2022).
Dai, S. et al. Hyperbolic phonon polaritons in suspended hexagonal boron nitride. Nano Lett. 19, 1009–1014 (2018).
Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).
Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).
Zhou, Y. et al. Tunable low loss 1D surface plasmons in InAs nanowires. Adv. Mater. 30, 1802551 (2018).
Fali, A. et al. Refractive index-based control of hyperbolic phonon-polariton propagation. Nano Lett. 19, 7725–7734 (2019).
He, M. et al. Polariton design and modulation via van der Waals/doped semiconductor heterostructures. Nat. Commun. 14, 7965 (2023).
Dubrovkin, A. M. et al. Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons. Nat. Commun. 11, 1863 (2020).
Dubrovkin, A. M., Qiang, B., Krishnamoorthy, H. N. S., Zheludev, N. I. & Wang, Q. J. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun. 9, 1762 (2018).
Shen, J. et al. Hyperbolic phonon polaritons with positive and negative phase velocities in suspended α-MoO3. Appl. Phys. Lett. 120, 113101 (2022).
Chaudhary, K. et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).
Lee, I.-H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).
Menabde, S. G. et al. Low-loss anisotropic image polaritons in van der Waals crystal α-MoO3. Adv. Opt. Mater. 10, 2201492 (2022).
Menabde, S. G. et al. Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. Sci. Adv. 8, eabn0627 (2022).
Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).
Orsini, L. et al. Deep subwavelength topological edge state in a hyperbolic medium. Nat. Nanotechnol. 19, 1485–1490 (2024).
Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021). References 122 and 123 demonstrate that plasmon polaritons can be dragged by drifting electrons in the 2D material graphene.
Zhao, W. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).
Pogna, E. A. et al. Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies. Nat. Commun. 15, 2373 (2024).
Gao, H. et al. Tunable anisotropic plasmons in monolayer Ca4N2 induced by orbital-selective transitions. Opt. Express 32, 45197–45206 (2024).
Xing, Q. et al. Tunable anisotropic van der Waals films of 2M-WS2 for plasmon canalization. Nat. Commun. 15, 2623 (2024).
Luo, Y. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023).
Wang, M. et al. Spin–orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight 2, 12 (2022).
Xiong, L. et al. Polaritonic vortices with a half-integer charge. Nano Lett. 21, 9256–9261 (2021).
Guan, F. et al. Compensating losses in polariton propagation with synthesized complex frequency excitation. Nat. Mater. 23, 506–511 (2024).
Kim, S., Krasnok, A. & Alù, A. Complex-frequency excitations in photonics and wave physics. Science 387, eado4128 (2025).
Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).
Sternbach, A. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).
Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 5, eaat9618 (2019).
Fu, R. et al. Manipulating hyperbolic transient plasmons in a layered semiconductor. Nat. Commun. 15, 709 (2024).
Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).
Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).
Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).
Zhou, Y. et al. Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures. Nat. Commun. 14, 7686 (2023). This reference reports real-space imaging of surface phonon polaritons in SrTiO3 and LaAlO3/SrTiO3 heterostructures at cryogenic temperatures as well as the thermal tunability of polaritonic properties.
Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).
Taboada-Gutiérrez, J. et al. Unveiling the mechanism of phonon-polariton damping in α-MoO3. ACS Photon.11, 3570–3577 (2024).
Duan, J. & Zhou, Y. Magnetic order as a tuning knob for Coulomb correlation. Nat. Mater. 24, 332–333 (2025).
Liebich, M. et al. Controlling Coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order. Nat. Mater. 24, 384–390 (2025). References 143 and 144 demonstrate that antiferromagnetic order blocks interlayerhopping of electron–hole pairs in a two-dimensional magnetic semiconductor (CrSBr), leading to the formation ofmagnetic surface excitons with quasi-one-dimensional quantum confinement.
Shao, Y. et al. Magnetically confined surface and bulk excitons in a layered antiferromagnet. Nat. Mater. 24, 391–398 (2025).
He, M. et al. Guided mid-IR and near-IR light within a hybrid hyperbolic-material/silicon waveguide heterostructure. Adv. Mater. 33, 2004305 (2021).
Pan, Z. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023).
Pei, Y., Chen, L., Jeon, W., Liu, Z. & Chen, R. Low-dimensional heat conduction in surface phonon polariton waveguide. Nat. Commun. 14, 8242 (2023).
Boroviks, S. et al. Extremely confined gap plasmon modes: when nonlocality matters. Nat. Commun. 13, 3105 (2022).
Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).
Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photon. 5, 283–287 (2011).
Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).
Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).
Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).
Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).
Herzig Sheinfux, H. et al. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).
Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).
Jäckering, L. et al. Super-resolution imaging of nanoscale inhomogeneities in hBN-covered and encapsulated few-layer graphene. Adv. Sci. 12, 2409039 (2025).
He, M. et al. Ultrahigh-resolution, label-free hyperlens imaging in the mid-IR. Nano Lett. 21, 7921–7928 (2021).
Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).
Bylinkin, A. et al. On-chip phonon-enhanced IR near-field detection of molecular vibrations. Nat. Commun. 15, 8907 (2024).
Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).
Bylinkin, A. et al. Dual-band coupling of phonon and surface plasmon polaritons with vibrational and electronic excitations in molecules. Nano Lett. 23, 3985–3993 (2023).
Arora, S., Bauer, T., Barczyk, R., Verhagen, E. & Kuipers, L. Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths. Light. Sci. Appl. 10, 9 (2021).
Smirnova, D. et al. Polaritonic states trapped by topological defects. Nat. Commun. 15, 6355 (2024).
Yang, X. et al. Far-Field spectroscopy and near-field optical imaging of coupled plasmon–phonon polaritons in 2D van der Waals heterostructures. Adv. Mater. 28, 2931–2938 (2016).
Chen, X. et al. Machine learning for optical scanning probe nanoscopy. Adv. Mater. 35, 2109171 (2023).
García de Abajo, F. J. Graphene plasmonics: challenges and opportunities. ACS Photon. 1, 135–152 (2014).
Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).
Luan, Y. et al. Imaging anisotropic waveguide exciton polaritons in tin sulfide. Nano Lett. 22, 1497–1503 (2022).
Sternbach, A. J. et al. Femtosecond exciton dynamics in WSe2 optical waveguides. Nat. Commun. 11, 3567 (2020).
Zhao, W. et al. Observation of hydrodynamic plasmons and energy waves in graphene. Nature 614, 688–693 (2023).
