Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Announcing Amazon EC2 G7e instances accelerated by NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs

    January 25, 2026

    Tech CEOs boast and bicker about AI at Davos

    January 25, 2026

    How Content Management Is Transforming Construction ERP

    January 25, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»A surprising critical state emerges in active nematic materials – Physics World
    Nanotechnology

    A surprising critical state emerges in active nematic materials – Physics World

    big tee tech hubBy big tee tech hubJanuary 22, 2026022 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    A surprising critical state emerges in active nematic materials – Physics World
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


    A transition in active nematics produces slow, strongly interacting defects, a behaviour confirmed in living cells

    Emergence of anti-hyperuniform defect organization in active nematics. At high activity (left), topological defects are distributed nearly uniformly throughout the system. Reducing activity toward a critical point (right) triggers defect clustering, and large defect-free regions exist alongside defect-rich ones

    Emergence of anti-hyperuniform defect organization in active nematics. At high activity (left), topological defects are distributed nearly uniformly throughout the system. Reducing activity toward a critical point (right) triggers defect clustering, and large defect-free regions exist alongside defect-rich ones (Courtesy: Doostmohammadi/University of Copenhagen)

    Nematics are materials made of rod‑like particles that tend to align in the same direction. In active nematics, this alignment is constantly disrupted and renewed because the particles are driven by internal biological or chemical energy. As the orientation field twists and reorganises, it creates topological defects-points where the alignment breaks down. These defects are central to the collective behaviour of active matter, shaping flows, patterns, and self‑organisation.

    In this work, the researchers identify an active topological phase transition that separates two distinct regimes of defect organisation. As the system approaches this transition from below, the dynamics slow dramatically: the relaxation of defect density becomes sluggish, fluctuations in the number of defects grow in amplitude and lifetime, and the system becomes increasingly sensitive to small changes in activity. At the critical point, defects begin to interact over long distances, with correlation lengths that grow with system size. This behaviour produces a striking dual‑scaling pattern, defect fluctuations appear uniform at small scales but become anti‑hyperuniform at larger scales, meaning that the number of defects varies far more than expected from a random distribution.

    A key finding is that this anti‑hyperuniformity originates from defect clustering. Rather than forming ordered structures or undergoing phase separation, defects tend to appear near existing defects, creating multiscale clusters. This distinguishes the transition from well‑known defect‑unbinding processes such as the Berezinskii-Kosterlitz-Thouless transition in passive nematics or the nematic-isotropic transition in screened active systems. Above the critical activity, the system enters a defect‑laden turbulent state where defects are more uniformly distributed and correlations become short‑ranged and negative.

    The researchers confirm these behaviours experimentally using large‑field‑of‑view measurements of endothelial cell monolayers which are the cells that line blood vessels. The same dual‑scaling behaviour, long‑range correlations, and clustering appear in these living tissues, demonstrating that the transition is robust across system sizes, parameter variations, frictional damping, and boundary conditions.

    Do you want to learn more about this topic?

    Active phase separation: new phenomenology from non-equilibrium physics M E Cates and C Nardini (2025)



    Source link

    Active Critical emerges materials nematic Physics State Surprising World
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Nanomaterials Transformed by Engineering Shape, Not Chemistry

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 23, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Announcing Amazon EC2 G7e instances accelerated by NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs

    January 25, 2026

    Tech CEOs boast and bicker about AI at Davos

    January 25, 2026

    How Content Management Is Transforming Construction ERP

    January 25, 2026

    This week in AI updates: GitHub Copilot SDK, Claude’s new constitution, and more (January 23, 2026)

    January 25, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Announcing Amazon EC2 G7e instances accelerated by NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs

    January 25, 2026

    Tech CEOs boast and bicker about AI at Davos

    January 25, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.