Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    The death of reactive IT: How predictive engineering will redefine cloud performance in 10 years

    February 11, 2026

    Oceanhorn 3: Legend of the Shadow Sea launches March 5 on Apple Arcade

    February 11, 2026

    The danger of glamourizing one shots

    February 11, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»A unified model for light emission from solids
    Nanotechnology

    A unified model for light emission from solids

    big tee tech hubBy big tee tech hubJanuary 29, 20260317 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    A unified model for light emission from solids
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Stepanov, B. & Gribkovskii, V. Theory of Luminescence (Iliffe, 1968).

  • Gribkovskii, V. in Luminescence of Solids 1–43 (Springer, 1998).

  • Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).

    Article 

    Google Scholar
     

  • Yang, H. et al. Orchestrating spontaneous emission with metasurfaces: recent advances in engineering thermal, luminescent, and quantum emissions. Adv. Opt. Mater. 13, 2402755 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Muniain, U., Esteban, R., Aizpurua, J. & Greffet, J.-J. Unified treatment of light emission by inelastic tunneling: interaction of electrons and photons beyond the gap. Phys. Rev. X 14, 021017 (2024). This paper presents the theory of plasmon emission from inelastic tunnelling. The equivalence between the radiation from fluctuating currents and the Fermi golden rule approach is derived explicitly.

    CAS 

    Google Scholar
     

  • Sivan, Y. & Dubi, Y. Theory of ‘hot’ photoluminescence from drude metals. ACS Nano 15, 8724–8732 (2021). The theory of PL from metals is discussed, including non-equilibrium electrons and holes.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baffou, G. Anti-Stokes thermometry in nanoplasmonics. ACS Nano 15, 5785–5792 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science 375, eabm9293 (2022). A theory of scintillation is proposed using equation (8) and the Green tensor formalism.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowman, A. R. et al. Quantum-mechanical effects in photoluminescence from thin crystalline gold films. Light Sci. Appl. 13, 91 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loirette-Pelous, A. & Greffet, J.-J. Theory of photoluminescence by metallic structures. ACS Nano 18, 31823 (2024). A theory of PL from metallic nanoparticles is presented, including a derivation of equation (10).

  • Karnieli, A. et al. Modeling quantum optical phenomena using transition currents. Appl. Phys. Rev. 11, 031305 (2024). The authors discuss light emission from transition currents and applications to quantum effects.

    Article 
    CAS 

    Google Scholar
     

  • Bailly, E. et al. 2D silver-nanoplatelets metasurface for bright directional photoluminescence, designed with the local Kirchhoff’s law. ACS Nano 18, 4903–4910 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirchhoff, G. On the relation between the radiating and absorbing powers of different bodies for light and heat. Lond. Edin. Dublin Phil. Mag. J. Sci. 20, 1–21 (1860). This paper presents the original derivation of Kirchhoff’s law.

    Article 

    Google Scholar
     

  • Rytov, S. M., Kravtsov, Y. A. & Tatarskii, V. I. Principles of Statistical Radiophysics Vol. 3 (Springer, 1989). This book provides a thorough introduction to fluctuational electrodynamics.

  • Landau, L., Lifshitz, E. M. & Pitaevskii, L. Statistical Physics Part I (Pergamon, 1980).

  • Li, W. & Fan, S. Nanophotonic control of thermal radiation for energy applications. Opt. Express 26, 15995 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baranov, D. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Picardi, M., Nimje, K. & Papadakis, G. Dynamic modulation of thermal emission—a tutorial. J. Appl. Phys. 133, 111101 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vazquez-Lozano, J. E. & Liberal, I. Review on the scientific and technological breakthroughs in thermal emission engineering. ACS Appl. Opt. Mater. 2, 898 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, Q. et al. Controlling thermal emission with metasurfaces and its applications. Nanophotonics 13, 1279–1301 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamoreaux, S. K. The Casimir force: background, experiments, and applications. Rep. Progr. Phys. 68, 201 (2004).

    Article 

    Google Scholar
     

  • Henkel, C., Joulain, K., Mulet, J.-P. & Greffet, J.-J. Radiative forces on small particles in thermal near fields. J. Opt. A4, S109 (2002).


    Google Scholar
     

  • Henkel, C., Joulain, K., Mulet, J.-P. & Greffet, J.-J. Coupled surface polaritons and the Casimir force. Phys. Rev. A 69, 023803 (2004).

    Article 

    Google Scholar
     

  • Joulain, K., Mulet, J.-P., Marquier, F., Carminati, R. & Greffet, J.-J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2004).

    Article 

    Google Scholar
     

  • Henry, C. & Kazarinov, F. Quantum noise in photonics. Rev. Mod. Phys. 68, 801 (1996). This paper offers a thorough quantum treatment of light emission from semiconductors, including a detailed derivation of the fluctuation–dissipation relation for pumped semiconductors.

    Article 
    CAS 

    Google Scholar
     

  • Greffet, J.-J., Bouchon, P., Brucoli, G. & Marquier, F. Light emission by nonequilibrium bodies: local Kirchhoff law. Phys. Rev. X 8, 021008 (2018). The authors provide a derivation of a local Kirchhoff law that is applicable to bodies with arbitrary shapes and inhomogeneous temperatures and chemical potentials.

    CAS 

    Google Scholar
     

  • Benisty, H., Greffet, J.-J. & Lalanne, P. Introduction to Nanophotonics (Oxford Univ. Press, 2022).

  • Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, M. et al. Self-focused thermal emission and holography realized by mesoscopic thermal emitters. ACS Photon. 8, 497–504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).

    Article 

    Google Scholar
     

  • Overvig, A., Yu, N. & Alù, A. Chiral quasi-bound states in the continuum. Phys. Rev. Lett. 126, 073001 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celanovic, I., Perreault, D. & Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005).

    Article 

    Google Scholar
     

  • Fan, Z., Hwang, T. & Lin, S. A. Directional thermal emission and display using pixelated non-imaging micro-optics. Nat. Commun. 15, 4544 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puscasu, I. & Schaich, W. L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl. Phys. Lett. 92, 233102 (2008).

    Article 

    Google Scholar
     

  • Liu, X. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bouchon, P., Koechlin, C., Pardo, F., Haïdar, R. & Pelouard, J.-L. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt. Lett. 37, 1038–1040 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanchard, C. et al. Metallo-dielectric metasurfaces for thermal emission with controlled spectral bandwidth and angular aperture. Opt. Mat. Express 12, 1–12 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cui, Y. et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattoni, A. et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett. 11, 3557–3563 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahan, N. et al. Enhanced coherency of thermal emission: beyond the limitation imposed by delocalized surface waves. Phys. Rev. B 76, 045427 (2007).

    Article 

    Google Scholar
     

  • Lu, G. et al. Engineering the spectral and spatial dispersion of thermal emission via polariton-phonon strong coupling. Nano Lett. 21, 1831–1838 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photon. 3, 658–661 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wojszvzyk, L. et al. An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated beyond 10 MHz. Nat. Commun. 12, 1492 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadsworth, S. L., Clem, P. G., Branson, E. D. & Boreman, G. D. Broadband circularly-polarized infrared emission from multilayer metamaterials. Opt. Mater. Express 1, 466–479 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Dahan, N., Gorodetski, Y., Frischwasser, K., Kleiner, V. & Hasman, E. Geometric doppler effect: spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen, A. et al. Large circular dichroism in the emission from an incandescent metasurface. Optica 10, 232–238 (2023).

    Article 

    Google Scholar
     

  • Wang, X. et al. Observation of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces. Sci. Adv. 9, eade4203 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyazaki, H. T. et al. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing. Sci. Technol. Adv. Mater. 16, 035005 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoue, T., Zoysa, M. D., Asano, T. & Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 13, 928–931 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. & Madilla, W. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shi, C., Mahlmeister, N. H., Luxmoore, I. J. & Nash, G. R. Metamaterial-based graphene thermal emitter. Nano Res. 11, 3567–3573 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kang, D., Inoue, T., Asano, T. & Noda, S. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photon. 6, 1565–1571 (2017).

    Article 

    Google Scholar
     

  • Brar, V. W. et al. Electronic modulation of infrared radiation in graphene plasmonic resonators. Nat. Commun. 6, 7032 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papadakis, G. T., Zhao, B., Buddhiraju, S. & Fan, S. Gate-tunable near-field heat transfer. ACS Photon. 6, 709–719 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, N. H., Sherrott, M. C., Broulliet, J., Atwater, H. A. & Minnich, A. J. Electronic modulation of near-field radiative transfer in graphene field effect heterostructures. Nano Lett. 19, 3898–3904 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, T., Zhang, L., Simpson, R. E. & Cryan, M. J. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J. Opt. Soc. Am. B 30, 1580–1585 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Qu, Y., Li, Q., Cai, L. & Qiu, M. Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5. Opt. Mater. Express 8, 2312–2320 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fan, D., Li, Q. & Dai, P. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films. Acta Astronaut. 121, 144–152 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polder, D. & van Hove, M. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303 (1971).

    Article 

    Google Scholar
     

  • Würfel, P. The chemical potential of radiation. J. Phys. C 15, 3967 (1982). This paper introduces the concept of the photon chemical potential and the generalized Kirchhoff’s law for pumped semiconductors.

    Article 

    Google Scholar
     

  • Feuerbacher, B. & Würfel, P. Verification of a generalised Planck law by investigation of the emission from GaAs luminescent diodes. J. Phys. Condens. Matter 2, 3803 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Green, M., Zhao, J., Wang, A., Reece, P. & Gal, M. Efficient silicon light-emitting diodes. Nature 412, 805–808 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le-Van, Q., Le Roux, X., Aassime, A. & Degiron, A. Electrically driven optical metamaterials. Nat. Commun. 7, 12017 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monin, H. et al. Controlling light emission by a thermalized ensemble of colloidal quantum dots with a metasurface. Opt. Express 31, 4851–4861 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coldren, L. A., Corzine, S. W. & Mashanovitch, M. L. Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

  • Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Progr. Phys. 78, 013901 (2014).

    Article 

    Google Scholar
     

  • George, J. et al. Ultra-strong coupling of molecular materials: spectroscopy and dynamics. Faraday Discuss. 178, 281 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aberra-Guebrou, S. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmon. Phys. Rev. Lett. 108, 066401 (2012).

    Article 

    Google Scholar
     

  • Bailly, E., Hugonin, J.-P., Vest, B. & Greffet, J.-J. Spatial coherence of light emitted by thermalized ensembles of emitters coupled to surface waves. Phys. Rev. Res. 3, L032040 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez de la Vega, C. R. et al. Plasmon-mediated energy transfer between two systems out of equilibrium. ACS Photon. 10, 1169–1176 (2023).

    CAS 

    Google Scholar
     

  • Garcia de Abajo, F. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H.-L. et al. Quantitative assessment of carrier density by cathodoluminescence. I. GaAs thin films and modeling. Phys. Rev. Appl. 15, 024006 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Loirette-Pelous, A. & Greffet, J.-J. On the applicability of Kirchhoff’s law to the lasing regime. Optica 11, 1621 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Laks, B. & Mills, D. L. Photon emission from slightly roughened tunnel junctions. Phys. Rev. B 20, 4962–4980 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Laks, B. & Mills, D. L. Light emission from tunnel junctions: the role of the fast surface polariton. Phys. Rev. B 22, 5723–5729 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Hone, D., Mühlschlegel, B. & Scalapino, D. J. Theory of light emission from small particle tunnel junctions. Appl. Phys. Lett. 33, 203–204 (1978).

    Article 

    Google Scholar
     

  • Kirtley, J., Theis, T. N. & Tsang, J. C. Light emission from tunnel junctions on gratings. Phys. Rev. B 24, 5650–5663 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Kirtley, J. R., Theis, T. N., Tsang, J. C. & DiMaria, D. J. Hot-electron picture of light emission from tunnel junctions. Phys. Rev. B 27, 4601–4611 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Persson, B. N. J. & Baratoff, A. Theory of photon emission in electron tunneling to metallic particles. Phys. Rev. Lett. 68, 3224–3227 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mooradian, A. Photoluminescence of metals. Phys. Rev. Lett. 22, 185 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, G., Yu, Z. & Shen, Y. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Apell, P., Monreal, R. & Lundqvist, S. Photoluminescence of noble metals. Phys. Scripta 38, 174 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Wilcoxon, J., Martin, J., Parsapour, F., Wiedenman, B. & Kelley, D. Photoluminescence from nanosize gold clusters. J. Chem. Phys. 108, 9137–9143 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Mohamed, M. B., Volkov, V., Link, S. & El-Sayed, M. A. The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 317, 517–523 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Huang, T. & Murray, R. W. Visible luminescence of water-soluble monolayer-protected gold clusters. J. Phys. Chem. B 105, 12498–12502 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).

    Article 

    Google Scholar
     

  • Wu, X. et al. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 4, 113–120 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tcherniak, A. et al. One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J. Phys. Chem. C 115, 15938–15949 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hu, H., Duan, H., Yang, J. K. & Shen, Z. X. Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano 6, 10147–10155 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A. & Orrit, M. Luminescence quantum yield of single gold nanorods. Nano Lett. 12, 4385–4391 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. et al. Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods. Nanoscale 7, 577–582 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, X. & Cahill, D. G. Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering. Appl. Phys. Lett. 109, 183104 (2016).

    Article 

    Google Scholar
     

  • Lin, K.-Q. et al. Intraband hot-electron photoluminescence from single silver nanorods. ACS Photon. 3, 1248–1255 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Carattino, A., Caldarola, M. & Orrit, M. Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barella, M. et al. In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-Stokes thermometry. ACS Nano 15, 2458–2467 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cai, Y.-Y., Tauzin, L. J., Ostovar, B., Lee, S. & Link, S. Light emission from plasmonic nanostructures. J. Chem. Phys. 155, 060901 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahbazyan, T. V. Purcell factor for plasmon-enhanced metal photoluminescence. J. Phys. Chem. C 127, 5898–5903 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dubi, Y. & Sivan, Y. ‘Hot’ electrons in metallic nanostructures-non-thermal carriers or heating? Light Sci. Appl. 8, 89 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, S. et al. End-to-end design of multicolor scintillators for enhanced energy resolution in X-ray imaging. Light Sci. Appl. 14, 158 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurman, Y. et al. Purcell-enhanced X-ray scintillation. Sci. Adv. 10, eadq6325 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Monier, L. et al. Large-scale self-assembled nanophotonic scintillators for X-ray imaging. Nat. Commun. 16, 5750 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shultzman, A., Segal, O., Kurman, Y., Roques-Carmes, C. & Kaminer, I. Enhanced imaging using inverse design of nanophotonic scintillators. Adv. Opt. Mater. 11, 220318 (2023).

    Article 

    Google Scholar
     

  • Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dung, D. et al. Variable potentials for thermalized light and coupled condensates. Nat. Photon. 11, 565–569 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Loirette-Pelous, A. & Greffet, J.-J. Photon Bose–Einstein condensation and lasing in semiconductor cavities. Laser Photon. Rev. 17, 2300366 (2023).

    Article 

    Google Scholar
     

  • Barland, S., Azam, P., Lippi, G., Nyman, R. & Kaiser, R. Photon thermalisation and a condensation phase transition in an electrically pumped semiconductor microresonator. Opt. Express 29, 8368 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schofield, R. et al. Bose–Einstein condensation of light in a semiconductor quantum well microcavity. Nat. Photon. 18, 1083–1089 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pieczarka, M. et al. Bose–Einstein condensation of photons in a vertical-cavity surface-emitting laser. Nat. Photon. 18, 1090–1096 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shayegan, K. J., Zhao, B., Kim, Y., Fan, S. & Atwater, H. A. Nonreciprocal infrared absorption via resonant magneto-optical coupling to inas. Sci. Adv. 8, eabm4308 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shayegan, K. J., Biswas, S., Zhao, B., Fan, S. & Atwater, H. A. Direct observation of the violation of Kirchhoff’s law of thermal radiation. Nat. Photon. 17, 891–896 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Long, O. et al. Nonreciprocal scintillation using one-dimensional magneto-optical photonic crystals. Phys. Rev. Appl. 22, 054062 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lagrée, M. et al. Effective-density-matrix approach for intersubband plasmons coupled to a cavity field: electrical extraction and injection of intersubband polaritons. Phys. Rev. Appl. 21, 034002 (2024).

    Article 

    Google Scholar
     

  • Yang, W. et al. A graphene Zener-Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karabchevsky, A., Mosayyebi, A. & Kavokin, A. Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles. Light Sci. Appl. 5, e16164 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez-Lozano, J. E. & Liberal, I. Incandescent temporal metamaterials. Nat. Commun. 18, 4606 (2023).

    Article 

    Google Scholar
     

  • Cohen-Tannoudji, C., Dupont-Roc, J., Grinberg, G. & Thickstun, P. Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1992).

  • Muniz, Y., da Rosa, F. S. S., Farina, C., Szilard, D. & Kort-Kamp, W. J. M. Quantum two-photon emission in a photonic cavity. Phys. Rev. A 100, 023818 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljačić, M. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leon, C. C. et al. Photon superbunching from a generic tunnel junction. Sci. Adv. 5, eaav4986 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivan, Y. et al. Crossover from nonthermal to thermal photoluminescence from metals excited by ultrashort light pulses. ACS Nano 17, 11439–11453 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y.-Y. et al. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano 12, 976–985 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y.-Y. et al. Anti-Stokes emission from hot carriers in gold nanorods. Nano Lett. 19, 1067–1073 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giuliani, L. G. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

  • Vogel, W. & Welsch, D. Quantum Optics (Wiley, 2006).

  • Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).

  • Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, 2011).

  • Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 1990).

  • Siegman, A. Lasers (University Science Books, 1986).



  • Source link

    emission light model solids Unified
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Super-moiré spin textures in twisted two-dimensional antiferromagnets

    February 10, 2026

    Claude Opus 4.6: Anthropic’s powerful model for coding, agents, and enterprise workflows is now available in Microsoft Foundry

    February 10, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    The death of reactive IT: How predictive engineering will redefine cloud performance in 10 years

    February 11, 2026

    Oceanhorn 3: Legend of the Shadow Sea launches March 5 on Apple Arcade

    February 11, 2026

    The danger of glamourizing one shots

    February 11, 2026

    Research plots pathway to sustainable solar scale-up

    February 11, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    The death of reactive IT: How predictive engineering will redefine cloud performance in 10 years

    February 11, 2026

    Oceanhorn 3: Legend of the Shadow Sea launches March 5 on Apple Arcade

    February 11, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.