Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).
Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode effect. Phys. Rev. Lett. 128, 037001 (2022).
Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite-momentum superconductors. Proc. Natl Acad. Sci. USA 119, e2119548119 (2022).
Davydova, M. et al. Universal Josephson diode effect. Sci. Adv. 8, eabo0309 (2022).
Hou, Y. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 131, 027001 (2023).
Narita, H. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 17, 823–828 (2022).
Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).
Pal, B. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 18, 1228–1233 (2022).
Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).
Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558–577 (2023).
Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).
Zhang, Y., Gu, Y., Li, P., Hu, J. & Jiang, K. General theory of Josephson diodes. Phys. Rev. X 12, 041013 (2022).
Jeon, K.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 21, 1008–1013 (2022).
Seoane Souto, R. et al. Tuning the Josephson diode response with an a.c. current. Phys. Rev. Research 6, L022002 (2024).
Gupta, M. et al. Gate-tunable superconducting diode effect in a three-terminal Josephson device. Nat. Commun. 14, 3078 (2023).
Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).
Ortiz, B. R. et al. CsV3Sb5: A Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).
Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).
Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chinese Phys. Lett. 38, 037403 (2021).
Kang, M. et al. Twofold Van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).
Hu, Y. et al. Rich nature of Van Hove singularities in kagome superconductor CsV3Sb5. Nat. Commun. 13, 2220 (2022).
Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).
Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).
Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).
Zheng, L. et al. Emergent charge order in pressurized kagome superconductor CsV3Sb5. Nature 611, 682–687 (2022).
Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).
Jiang, K., Zhang, Y., Zhou, S. & Wang, Z. Chiral spin density wave order on the frustrated honeycomb and bilayer triangle lattice Hubbard model at half-filling. Phys. Rev. Lett. 114, 216402 (2015).
Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).
Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).
Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. 18, 1470–1475 (2022).
Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).
Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chinese Phys. Lett. 38, 077402 (2021).
Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 187004 (2021).
Zhou, S. & Wang, Z. Chern Fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagomé superconductors. Nat. Commun. 13, 7288 (2022).
Han, X. et al. Atomic manipulation of the emergent quasi-2D superconductivity and pair density wave in a kagome metal. Nat. Nanotechnol. 20, 1017–1025 (2025).
Deng, H. et al. Chiral kagome superconductivity modulations with residual Fermi arcs. Nature 632, 775–781 (2024).
Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).
Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).
Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).
Saykin, D. R. et al. High resolution polar Kerr effect studies of CsV3Sb5: tests for time-reversal symmetry breaking below the charge-order transition. Phys. Rev. Lett. 131, 016901 (2023).
Zhong, Y. et al. Nodeless electron pairing in CsV3Sb5-derived kagome superconductors. Nature 617, 488–492 (2023).
Le, T. et al. Superconducting diode effect and interference patterns in kagome CsV3Sb5. Nature 630, 64–69 (2024).
Christensen, M. H. et al. Loop currents in AV3Sb5 kagome metals: multipolar and toroidal magnetic orders. Phys. Rev. B 106, 144504 (2022).
Feng, X. et al. Low-energy effective theory and symmetry classification of flux phases on the kagome lattice. Phys. Rev. B 104, 165136 (2021).
Shapiro, S. Josephson currents in superconducting tunneling: the effect of microwaves and other observations. Phys. Rev. Lett. 11, 80–82 (1963).
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).
Rüfenacht, A., Flowers-Jacobs, N. E. & Benz, S. P. Impact of the latest generation of Josephson voltage standards in a.c. and d.c. electric metrology. Metrologia 55, S152–S173 (2018).
Howe, L. et al. Digital control of a superconducting qubit using a Josephson pulse generator at 3 K. PRX Quantum 3, 010350 (2022).
Kidwingira, F., Strand, J. D., Van Harlingen, D. J. & Maeno, Y. Dynamical superconducting order parameter domains in Sr2RuO4. Science 314, 1267–1271 (2006).
Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).
Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979).
Hossain, M. S. et al. Unconventional gapping behavior in a kagome superconductor. Nat. Phys. 21, 556–563 (2025).
Tanaka, Y. et al. Domains in multiband superconductors. Phys. C 471, 747 (2011).
Su, H. et al. Microwave-assisted unidirectional superconductivity in Al-InAs nanowire-Al junctions under magnetic fields. Phys. Rev. Lett. 133, 087001 (2024).
Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
Huang, H.-L., Wu, D., Fan, D. & Zhu, X. Superconducting quantum computing: a review. Sci. China Inf. Sci. 63, 180501 (2020).
Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1996).
