Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
Essack, S. Y. & Lenglet, A. Bacterial antimicrobial resistance burden in Africa: accuracy, action, and alternatives. Lancet Glob. Heal. 12, e171–e172 (2023).
McKay, G. & Nguyen, D. in Handbook of Antimicrobial Resistance (eds Berghuis, A. et al.) 203–229 (Springer, 2017).
Solà-Riera, C., Gupta, S., Ljunggren, H.-G. & Klingström, J. Orthohantaviruses belonging to three phylogroups all inhibit apoptosis in infected target cells. Sci. Rep. 9, 834 (2019).
Břinda, K. et al. Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. Nat. Microbiol. 5, 455–464 (2020).
Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).
Vodstrcil, L. A. et al. Near-to-patient-testing to inform targeted antibiotic use for sexually transmitted infections in a public sexual health clinic: the NEPTUNE cohort study. Lancet Reg. Health West. Pac. 44, 101005 (2024).
Cheng, M. P. et al. Blood culture results before and after antimicrobial administration in patients with severe manifestations of sepsis: a diagnostic study. Ann. Intern. Med. 171, 547–554 (2019).
Sartorius, B. et al. The burden of bacterial antimicrobial resistance in the WHO African region in 2019: a cross-country systematic analysis. Lancet Glob. Health 11, 201–216 (2023).
VITEK 2 AST–Gram Negative Ciprofloxacin (≤0.06–≥4 µg/mL) Standard No. K214023 (bioMérieux Inc., 2022); https://www.accessdata.fda.gov/cdrh_docs/reviews/K214023.pdf
MicroScan Dried Gram Negative MIC/Combo Panels with Ciprofloxacin (Cp) (0.004–8 µg/mL) Standard No. K193536 (Beckman Coulter Inc., 2020); https://www.accessdata.fda.gov/cdrh_docs/reviews/K193536.pdf
BD Phoenix Automated Microbiology System—GN Ceftaroline (0.0156–4 µg/mL) Standard No. K190905 (Becton Dickinson and Company, 2019); https://www.accessdata.fda.gov/cdrh_docs/reviews/K190905.pdf
Baltekin, Ö, Boucharin, A., Tano, E., Andersson, D. I. & Elf, J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl Acad. Sci. USA 114, 9170–9175 (2017).
Kaushik, A. M. et al. Droplet-based single-cell measurements of 16S rRNA enable integrated bacteria identification and pheno-molecular antimicrobial susceptibility testing from clinical samples in 30 min. Adv. Sci. 8, 2003419 (2021).
Kim, T. H. et al. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature 632, 893–902 (2024).
Kearns, H., Goodacre, R., Jamieson, L. E., Graham, D. & Faulds, K. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal. Chem. 89, 12666–12673 (2017).
Zeeshan, Bahrami, S., Park, S. & Cho, S. Antibody functionalized capacitance sensor for label-free and real-time detection of bacteria and antibiotic susceptibility. Talanta 272, 125831 (2024).
Song, J. H. et al. Vertical capacitance aptasensors for real-time monitoring of bacterial growth and antibiotic susceptibility in blood. Biosens. Bioelectron. 143, 111623 (2019).
Reszetnik, G. et al. Next-generation rapid phenotypic antimicrobial susceptibility testing. Nat. Commun. 15, 9719 (2024).
Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557–561 (2012).
Daqiqeh Rezaei, S. et al. Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021).
Bhalla, N. & Shen, A. Q. Localized surface plasmon resonance sensing and its interplay with fluidics. Langmuir 40, 9842–9854 (2024).
Schirato, A. et al. Quantifying ultrafast energy transfer from plasmonic hot carriers for pulsed photocatalysis on nanostructures. ACS Nano 18, 18933–18947 (2024).
Wang, L. et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016).
Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).
Yu, Y., Ng, C., König, T. A. F. & Fery, A. Tackling the scalability challenge in plasmonics by wrinkle-assisted colloidal self-assembly. Langmuir 35, 8629–8645 (2019).
Li, Y., Chen, X. & Gu, N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J. Phys. Chem. B 112, 16647–16653 (2008).
Alafeef, M., Moitra, P., Dighe, K. & Pan, D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 16, 3141–3162 (2021).
Santopolo, G., Doménech-Sánchez, A., Russell, S. M. & de la Rica, R. Ultrafast and ultrasensitive naked-eye detection of urease-positive bacteria with plasmonic nanosensors. ACS Sens. 4, 961–967 (2019).
Duan, H., Wang, T., Su, Z., Pang, H. & Chen, C. Recent progress and challenges in plasmonic nanomaterials. Chem. Rev. 122, 846–873 (2022).
Choi, S., Zuo, J., Das, N., Yao, Y. & Wang, C. Scalable nanoimprint manufacturing of functional multilayer metasurface devices. Adv. Funct. Mater. 34, 2404852 (2024).
Gu, Y., Zhang, L., Yang, J. K. W., Yeo, S. P. & Qiu, C. W. Color generation via subwavelength plasmonic nanostructures. Nanoscale 7, 6409–6419 (2015).
Lim, K. T. P., Liu, H., Liu, Y. & Yang, J. K. W. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 10, 25 (2019).
Daqiqeh Rezaei, S. et al. Tunable, cost-effective, and scalable structural colors for sensing and consumer products. Adv. Opt. Mater. 7, 1900735 (2019).
AbdElFatah, T. et al. Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens. Nat. Nanotechnol. 18, 922–932 (2023).
Riss, T. L. et al. in Assay Guidance Manual 1–25 (Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004).
Braissant, O., Astasov-Frauenhoffer, M., Waltimo, T. & Bonkat, G. A review of methods to determine viability, vitality, and metabolic rates in microbiology. Front. Microbiol. 11, 547458 (2020).
Performance Standards for Antimicrobial Susceptibility Testing Standard No. M100, 31st edn (Clinical and Laboratory Standards Institute, 2021).
Uzarski, J. S., DiVito, M. D., Wertheim, J. A. & Miller, W. M. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials 129, 163–175 (2017).
Chen, J. L., Steele, T. W. J. & Stuckey, D. C. Metabolic reduction of resazurin; location within the cell for cytotoxicity assays. Biotechnol. Bioeng. 115, 351–358 (2018).
Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).
Primack, W., Bukowski, T., Sutherland, R., Gravens-Mueller, L. & Carpenter, M. What urinary colony count indicates a urinary tract infection in children? J. Pediatr. 191, 259–261.e1 (2017).
Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Standard No. M07, 11th edn (Clinical and Laboratory Standards Institute, 2018).
Hooton, T. M. et al. Diagnosis, prevention, and treatment of catheter-aassociated urinary tract infection in adults: 2009 international clinical practice guidelines from the infectious diseases society of America. Clin. Infect. Dis. 50, 625–663 (2010).
Kalil, A. C. et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 63, e61–e111 (2016).
Rose, W. E. et al. Increased endovascular Staphylococcus aureus inoculum is the link between elevated serum interleukin 10 concentrations and mortality in patients with bacteremia. Clin. Infect. Dis. 64, 1406–1412 (2017).
Lopes, A. L. K. et al. Development of a magnetic separation method to capture sepsis associated bacteria in blood. J. Microbiol. Methods (2016).
Yagupsky, P. & Nolte, F. S. Quantitative aspects of septicemia. Clin. Microbiol. Rev. (1990).
Mermel, L. A. et al. Quantitative analysis and molecular fingerprinting of methicillin-resistant Staphylococcus aureus nasal colonization in different patient populations: a prospective, multicenter study. Infect. Control Hosp. Epidemiol. 31, 592–597 (2010).
O’Hara, L. M. et al. Optimizing contact precautions to curb the spread of antibiotic-resistant bacteria in hospitals: a multicenter cohort study to identify patient characteristics and healthcare personnel interactions associated with transmission of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. (2019).
Mohammed, M. I. & Desmulliez, M. P. Y. Characterization and theoretical analysis of rapidly prototyped capillary action autonomous microfluidic systems. J. Microelectromech. Syst. 23, 1408–1416 (2014).
Glière, A. & Delattre, C. Modeling and fabrication of capillary stop valves for planar microfluidic systems. Sens. Actuators A Phys. 130–131, 601–608 (2006).
Olanrewaju, A., Beaugrand, M., Yafia, M. & Juncker, D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18, 2323–2347 (2018).
Papadimitriou, V. A., Segerink, L. I., van den Berg, A. & Eijkel, J. C. T. 3D capillary stop valves for versatile patterning inside microfluidic chips. Anal. Chim. Acta 1000, 232–238 (2018).
Jalali, M. et al. Plasmonic nanobowtiefluidic device for sensitive detection of glioma extracellular vesicles by Raman spectrometry. Lab Chip 21, 855–866 (2021).
IInnocenzi, P. et al. Hierarchical mesoporous films: from self-assembly to porosity with different length scales. Chem. Mater. 23, 2501–2509 (2011).
Sergyan, S. Color histogram features based image classification in content-based image retrieval systems. In Proc. 6th International Symposium on Applied Machine Intelligence and Informatics 221–224 (IEEE, 2008).
Zhou, L., Menon, S. S., Li, X., Zhang, M. & Malakooti, M. H. Machine learning enables reliable colorimetric detection of pH and glucose in wearable sweat sensors. Adv. Mater. Technol. 9, 2401121 (2024).
Pisner, D. A. & Schnyer, D. M. in Machine Learning: Methods and Applications to Brain Disorders (eds Mechelli, A. & Vieira, S.) 101–121 (Academic Press, 2020).
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & Freitas, N. de Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).
Christianson, S. et al. Comparative genomics of Canadian epidemic lineages of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 45, 1904–1911 (2007).
Hill, J. et al. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J. Clin. Microbiol. 46, 2800–2804 (2008).
Isenberg, H. in Clinical Microbiology Procedures Handbook 3rd edn, Ch. 3.12 (American Society for Microbiology, 2009).
McCarter, Y. S. et al. Cumitech 2C: Laboratory Diagnosis of Urinary Tract Infections (ed. Sharp, S. E.) (American Society for Microbiology, 2009).
Zhang, M. et al. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv. Sci. 7, 2001452 (2020).
Nguyen, A. V. et al. Ladder-shaped microfluidic system for rapid antibiotic susceptibility testing. Commun. Eng. 2, 15 (2023).
Huang, R. et al. Bioinspired plasmonic nanosensor for on-site antimicrobial susceptibility testing in urine samples. ACS Nano 16, 19229–19239 (2022).
Ho, C.-S. et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 10, 4927 (2019).
