Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Nanoscale C–H/C–D mapping of organic materials using electron spectroscopy
    Nanotechnology

    Nanoscale C–H/C–D mapping of organic materials using electron spectroscopy

    big tee tech hubBy big tee tech hubMarch 24, 2025007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Nanoscale C–H/C–D mapping of organic materials using electron spectroscopy
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Urey, H. C., Brickwedde, F. G. & Murphy, G. M. A hydrogen isotope of mass 2. Phys. Rev. 39, 164–165 (1932).

    Article 
    CAS 

    Google Scholar
     

  • Stuhrmann, H. B. & Miller, A. Small-angle scattering of biological structures. J. Appl. Crystallogr. 11, 325–345 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Ashkar, R. et al. Neutron scattering in the biological sciences: progress and prospects. Acta Crystallogr. D 74, 1129–1168 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Erlenmeyer, H., Schenkel, H. & Epprecht, A. Use of deuterium as an indicator in stereochemical investigations. Nature 138, 547 (1936).

    Article 
    CAS 

    Google Scholar
     

  • Schoenheimer, R. & Rittenberg, D. Deuterium as an indicator in the study of intermediary metabolism: III. The role of the fat tissues. J. Biol. Chem. 111, 175–181 (1935).

    Article 

    Google Scholar
     

  • Bates, F. S. & Wignall, G. D. Nonideal mixing in binary blends of perdeuterated and protonated polystyrenes. Macromolecules 19, 932–934 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Kirste, R. G., Kruse, W. A. & Ibel, K. Determination of conformation of polymers in amorphous solid-state and in concentrated solution by neutron-diffraction. Polymer 16, 120–124 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Warner, M., Higgins, J. S. & Carter, A. J. Chain dimensions and interaction parameters in neutron scattering from polymer blends with a labeled component. Macromolecules 16, 1931–1935 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Schwahn, D. et al. Microstructural effects on the Ginzburg number and the crossover-behavior in D-Pb/Ps blends. Phys. Rev. Lett. 73, 3427–3430 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jinnai, H., Nishikawa, Y., Morimoto, H., Koga, T. & Hashimoto, T. Geometrical properties and interface dynamics: time evolution of spinodal interface in a binary polymer mixture at the critical composition. Langmuir 16, 4380–4393 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Avakian, P., Hsu, W. Y., Meakin, P. & Snyder, H. L. Optical absorption of perdeuterated PMMA and influence of water. J. Polym. Sci. Pol. Phys. 22, 1607–1613 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Kaino, T., Jinguji, K. & Nara, S. Low-loss poly(methylmethacrylate-D8) core optical fibers. Appl. Phys. Lett. 42, 567–569 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Nemoto, K. et al. Laser-triggered ion acceleration and table top isotope production. Appl. Phys. Lett. 78, 595–597 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Donald, J. G. A., Kovanen, A. & Danon, Y. Deuterated target comparison for pyroelectric crystal D–D nuclear fusion experiments. J. Nucl. Mater. 405, 181–185 (2010).

    Article 

    Google Scholar
     

  • Liu, M. F. et al. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion. Matter Radiat. Extremes 6, 025901 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arbe, A., Alvarez, F. & Colmenero, J. Neutron scattering and molecular dynamics simulations: synergetic tools to unravel structure and dynamics in polymers. Soft Matter 8, 8257–8270 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ishikawa, R. et al. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10, 278–281 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyns, M., Primpke, S. & Gerdts, G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging. Anal. Methods 11, 5195–5202 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyata, T. et al. Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy. Microscopy 63, 377–382 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X., Gadre, C. A., Aoki, T. & Pan, X. Probing molecular vibrations by monochromated electron microscopy. Trends Chem. 4, 76–90 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Senga, R. et al. Position and momentum mapping of vibrations in graphene nanostructures. Nature 573, 247–250 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rez, P. et al. Damage-free vibrational spectroscopy of biological materials in the electron microscope. Nat. Commun. 7, 10945 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hachtel, J. A. et al. Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. Science 363, 525–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins, S. M. et al. Functional group mapping by electron beam vibrational spectroscopy from nanoscale volumes. Nano Lett. 20, 1272–1279 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crozier, P. A., Aoki, T. & Liu, Q. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy. Ultramicroscopy 169, 30–36 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haiber, D. M. & Crozier, P. A. Nanoscale probing of local hydrogen heterogeneity in disordered carbon nitrides with vibrational electron energy-loss spectroscopy. ACS Nano 12, 5463–5472 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jokisaari, J. R. et al. Vibrational spectroscopy of water with high spatial resolution. Adv. Mater. 30, e1802702 (2018).

    Article 

    Google Scholar
     

  • Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senga, R. et al. Imaging of isotope diffusion using atomic-scale vibrational spectroscopy. Nature 603, 68–72 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Gennes, P. G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

  • Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Oxford Univ. Press, 1986).

  • Bates, F. S. & Fredrickson, G. H. Block copolymers—designer soft materials. Phys. Today 52, 32–38 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. et al. Order-to-disorder transition of lamella-forming PS-b-P2VP films confined between the preferential surface and neutral substrate. Macromolecules 52, 8672–8681 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. et al. Lamellar orientation and transition behavior of PS-b-P2VP copolymers supported on physically adsorbed layers. Macromolecules 53, 6213–6219 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Dai, K. H. & Kramer, E. J. Determining the temperature-dependent Flory interaction parameter for strongly immiscible polymers from block copolymer segregation measurements. Polymer 35, 157–161 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Zalusky, A. S., Olayo-Valles, R., Wolf, J. H. & Hillmyer, M. A. Ordered nanoporous polymers from polystyrene-polylactide block copolymers. J. Am. Chem. Soc. 124, 12761–12773 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Everaers, R., Karimi-Varzaneh, H. A., Fleck, F., Hojdis, N. & Svaneborg, C. Kremer–Grest models for commodity polymer melts: linking theory, experiment, and simulation at the Kuhn scale. Macromolecules 53, 1901–1916 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chernova, I. K., Leschenko, S. S., Golikov, V. P. & Karpov, V. L. Radiation-chemical changes in polystyrene and its methyl derivatives. Polym. Sci. U.S.S.R. 22, 2382–2394 (1980).

    Article 

    Google Scholar
     

  • Schulz, M. F. et al. Phase behavior of polystyrene-poly(2-vinylpyridine) diblock copolymers. Macromolecules 29, 2857–2867 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article 

    Google Scholar
     

  • Dietz, J. D. & Hoy, R. S. Facile equilibration of well-entangled semiflexible bead-spring polymer melts. J. Chem. Phys. 156, 014103 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auhl, R., Everaers, R., Grest, G. S., Kremer, K. & Plimpton, S. J. Equilibration of long chain polymer melts in computer simulations. J. Chem. Phys. 119, 12718 (2003).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    CHCD electron mapping materials Nanoscale organic spectroscopy
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.