Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Training a Model on Multiple GPUs with Data Parallelism

    December 28, 2025

    3D-Printed Cinema Film Camera Oozes Vintage Vibes

    December 28, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Pt catalyst protected by graphene nanopockets enables lifetimes of over 200,000 h for heavy-duty fuel cell applications
    Nanotechnology

    Pt catalyst protected by graphene nanopockets enables lifetimes of over 200,000 h for heavy-duty fuel cell applications

    big tee tech hubBy big tee tech hubMarch 29, 2025027 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Pt catalyst protected by graphene nanopockets enables lifetimes of over 200,000 h for heavy-duty fuel cell applications
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • US Department of Energy. Fuel cells technologies office multi-year research, development, and demonstration plan (2017); https://www.energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_full_document.pdf

  • Satyapal, S. Hydrogen and fuel cell program overview (US Department of Energy, 2019); https://www.hydrogen.energy.gov/pdfs/review19/plenary_overview_satyapal_2019.pdf

  • Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021).

    Article 
    CAS 

    Google Scholar
     

  • North American Council for Freight Efficiency. Making sense of heavy-duty hydrogen fuel cell tractors (2020); https://nacfe.org/wp-content/uploads/2020/12/NACFE-Guidance-on-Hydrogen-Fuel-Cell-Tractors-FINAL-121620.pdf

  • US Department of Energy. Average annual vehicle miles traveled by major vehicle category (2020); https://afdc.energy.gov/data/10309

  • US Environmental Protection Agency. Fast facts on transportation greenhouse gas emissions (2019); https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

  • Davis, S. C. & Boundy. R. G. Transportation Energy Data Book: Edition 40 (Oak Ridge National Laboratory, 2020).

  • Marcinkoski, J. et al. Hydrogen Class 8 long haul truck targets (US Department of Energy, 2019); https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Status=Master

  • Eudy, L. & Post, M. Fuel Cell Buses In U.S. Transit Fleets: Current Status 2020 Report No. NREL/TP-5400-75583 (National Renewable Energy Laboratory, 2021).

  • James, B., Huya-Kouadio, J., Houchins, C. & Desantis, D. Final SA 2018 transportation fuel cell cost analysis—2020-01-23 (2018); https://www.energy.gov/sites/prod/files/2020/02/f71/fcto-sa-2018-transportation-fuel-cell-cost-analysis-2.pdf

  • Hua, T. et al. Status of hydrogen fuel cell electric buses worldwide. J. Power Sources 269, 975–993 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kodama, K., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 16, 140–147 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurtz, J., Sprik, S., Saur, G. & Onorato, S. Fuel Cell Electric Vehicle Durability and Fuel Cell Performance Report No. NREL/TP-5400-73011 (National Renewable Energy Laboratory, 2019).

  • Lohse-Busch, H. et al. Automotive fuel cell stack and system efficiency and fuel consumption based on vehicle testing on a chassis dynamometer at minus 18 °C to positive 35 °C temperatures. Int. J. Hydrogen Energy 45, 861–872 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Chen, Z., Xu, L. & Yan, Y. A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell. J. Power Sources 195, 2534–2540 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. X. et al. Ordered Pt3Co intermetallic nanoparticles derived from metal–organic frameworks for oxygen reduction. Nano Lett. 18, 4163–4171 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, D. S. et al. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 138, 1494–1497 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, D. Y. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 137, 15478–15485 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, B. et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 8, 258–266 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Z. et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 3, 124–135 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Song, T.-W. et al. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat. Commun. 13, 6521 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, C., Lyu, F. & Yin, Y. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 121, 834–881 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. et al. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 17, 968–975 (2022).

  • Ji, S. G., Kwon, H. C., Kim, T.-H., Sim, U. & Choi, C. H. Does the encapsulation strategy of Pt nanoparticles with carbon layers really ensure both highly active and durable electrocatalysis in fuel cells? ACS Catal. 12, 7317–7325 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, H. et al. Low Pt loading for high-performance fuel cell electrodes enabled by hydrogen-bonding microporous polymer binders. Nat. Commun. 13, 7577 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. High-platinum-content catalysts on atomically dispersed and nitrogen coordinated single manganese site carbons for heavy-duty fuel cells. J. Electrochem. Soc. 169, 034510 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ko, M., Padgett, E., Yarlagadda, V., Kongkanand, A. & Muller, D. A. Revealing the nanostructure of mesoporous fuel cell catalyst supports for durable, high-power performance. J. Electrochem. Soc. 168, 024512 (2021).

    Article 
    CAS 

    Google Scholar
     

  • US Department of Energy. M2FCT: Million Mile Fuel Cell Truck Consortium FC339, (2021); https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review21/fc339_weber_2021_o-pdf.pdf

  • Wang, X., Hu, L., Neyerlin, K. C. & Ahluwalia, R. K. Baselining activity and stability of ORR catalysts and electrodes for proton exchange membrane fuel cells for heavy-duty applications. J. Electrochem. Soc. 170, 024503 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Metal bond strength regulation enables large-scale synthesis of intermetallic nanocrystals for practical fuel cells. Nat. Mater. 23, 1259–1267 (2024).

  • Stariha, S. et al. Recent advances in catalyst accelerated stress tests for polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 165, F492–F501 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbir, F. in PEM Fuel Cells (ed. Barbir, F.) 33–72 (Academic Press, 2005).

  • Harrison, K. W., Hoskin, R. R. A. & Martin, G. D. Hydrogen production: fundamentals and case study summaries (National Renewable Energy Laboratory, 2010); https://www.nrel.gov/docs/fy10osti/47302.pdf

  • Jang, J. et al. Boosting fuel cell durability under shut-down/start-up conditions using a hydrogen oxidation-selective metal–carbon hybrid core–shell catalyst. ACS Appl. Mater. Interfaces 11, 27735–27742 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Granqvist, C. G. & Buhrman, R. A. Size distributions for supported metal catalysts: coalescence growth versus Ostwald ripening. J. Catal. 42, 477–479 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Borup, R. L. & Weber, A. Z. FC-PAD: Fuel Cell Performance And Durability Consortium Report No. LA-UR-19-22970 (2018).

  • Padgett, E. et al. Editors’ choice—connecting fuel cell catalyst nanostructure and accessibility using quantitative cryo-STEM tomography. J. Electrochem. Soc. 165, F173–F180 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Peng, B. et al. Embedded oxide clusters stabilize sub-2 nm Pt nanoparticles for highly durable fuel cells. Nat. Catal. 7, 818–828 (2024).

  • Garrick, T. R., Moylan, T. E., Yarlagadda, V. & Kongkanand, A. Characterizing electrolyte and platinum interface in PEM fuel cells using Co displacement. J. Electrochem. Soc. 164, F60 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yamada, H., Kato, H. & Kodama, K. Cell performance and durability of Pt/C cathode catalyst covered by dopamine derived carbon thin layer for polymer electrolyte fuel cells. J. Electrochem. Soc. 167, 084508 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L.-C., Cheng, Y.-S., Liao, W.-C., Huang, Y.-H. & Pan, Y.-T. Transient loss and recovery of platinum fuel cell cathode catalyst at high voltage efficiency regimes. J. Electrochem. Soc. 168, 054503 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garrick, T. R., Moylan, T. E., Carpenter, M. K. & Kongkanand, A. Editors’ choice—electrochemically active surface area measurement of aged Pt alloy catalysts in PEM fuel cells by Co stripping. J. Electrochem. Soc. 164, F55 (2017).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    200000h applications catalyst cell enables fuel graphene heavyduty lifetimes nanopockets protected
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Probing the fundamental nature of the Higgs Boson – Physics World

    December 28, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Training a Model on Multiple GPUs with Data Parallelism

    December 28, 2025

    3D-Printed Cinema Film Camera Oozes Vintage Vibes

    December 28, 2025

    Probing the fundamental nature of the Higgs Boson – Physics World

    December 28, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Training a Model on Multiple GPUs with Data Parallelism

    December 28, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.