Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Label-free fluorosensor detects enteroviral RNA with high selectivity and sensitivity
    Nanotechnology

    Label-free fluorosensor detects enteroviral RNA with high selectivity and sensitivity

    big tee tech hubBy big tee tech hubApril 7, 2025004 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Label-free fluorosensor detects enteroviral RNA with high selectivity and sensitivity
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


    Label-free fluorosensor detects enteroviral RNA with high selectivity and sensitivity
    Pictorial representation of the working principle of a functionalized Carbon Dots (CDs) and Ethidium Bromide (EB) based ratiometric fluorosensor (Func sensor). Credit: Jussi Toppari

    In a significant advancement, researchers from the Nanoscience Center (NSC) at the University of Jyväskylä, Finland, have unveiled an innovative, label-free ratiometric fluorosensor designed for the selective and sensitive detection of enteroviral RNA. The research promises to deliver even more advanced and effective detection methods, reinforcing the importance of interdisciplinary collaboration in addressing global health challenges.

    Viruses pose a severe threat to global health, as evidenced by recent pandemics. Early detection and identification are crucial for preventing new outbreaks. Traditional detection methods, while effective, often lack the possibility to give spatiotemporal information of virus genome release.

    “This interdisciplinary effort, combining expertise from biology, chemistry, and physics, marks a significant advancement in viral detection technology. We have developed an enhanced ratiometric fluorosensor using carbon dots (CDs) functionalized with Probe (single stranded complementary oligonucleotide fragment) and ethidium bromide (EB), for detection of enteroviral RNA,” says professor of physics Jussi Toppari from the University of Jyväskylä.

    The paper is published in the journal Carbon.

    Innovative ratiometric fluorosensor for viral detection

    Fluorescent nanoparticles have emerged as powerful tools for bioanalyte sensing, with CDs leading the way due to their simple synthesis, exceptional photostability, tunable photoluminescence, excellent aqueous solubility, biocompatibility, and versatile surface functionalities for ligand conjugation. These unique properties position CDs as a game-changer in the field of biosensing.

    “This so-called Functionalized Sensor (Func Sensor), where CDs are functionalized i.e., covalently bonded with the probe clearly outperforms the more traditional approach of Non-Functionalized Sensor (Non-Func Sensor) which is a simple mixture of CDs, probe, and EB,” explains Doctoral Researcher Amar Raj from University of Jyväskylä.

    Label-free fluorosensor detects enteroviral RNA with high selectivity and sensitivity
    Carbon dots (CDs) and Ethidium Bromide (EB) based two ratiometric fluorosensors: a Non-Func sensor (CDs/Probe/EB) and a Func sensor (CDs-Probe/EB) for the ultrasensitive detection of enterovirus RNA. Credit: Carbon (2025). DOI: 10.1016/j.carbon.2025.120222

    In both sensors, the presence of target DNA, hybridizing with the probe, enhanced EB fluorescence, while CD fluorescence changed slightly due to electron transfer, enabling ratiometric detection and was ultrasensitive.

    “The Non-Func Sensor showed a lower sensitivity with target DNA and was not effective with real enteroviral RNA samples, while the Func Sensor showed a higher sensitivity with DNA and real viral RNA, exhibiting clearly improved selectivity,” comments Postdoctoral Researcher Abhishek Pathak. He worked earlier as a Postdoctoral Researcher at the University of Jyväskylä.

    The superior performance of the Func Sensor is attributed to enhanced charge transfer due to covalent functionalization.

    “Our proof-of-principle study highlights the importance of covalent immobilization of the probe for improved electron transfer between CDs and EB and thus enhanced performance and demonstrates the suitability of the Func sensor for practical applications in rapid, real-time and precise in situ detection of viral RNA,” says Professor of Cell and Molecular Biology Varpu Marjomäki from University of Jyväskylä.

    In particular, the research shows that the Func sensor can detect enteroviral RNA release from the capsid in real-time in vitro. “This means that the Func sensor can be used as a novel viral RNA sensing platform which offers a much-needed possibility to detect real-time viral RNA appearance during infection,” says Marjomäki.

    Toward safer research

    This pioneering work by the research team not only demonstrates a novel method for detecting viral RNA but also sheds light on the charge transfer mechanisms between fluorophores. Building on this success, the research team is now working to make the system more robust by replacing the potentially hazardous dye ethidium bromide with the much safer, less cytotoxic biocompatible dyes.

    “This enhancement will further improve the safety and efficacy of in vivo viral RNA detection,” says Pathak.

    More information:
    Abhishek Pathak et al, Ultrasensitive ratiometric fluorosensor for enteroviral RNA detection based on improved electron transfer between carbon dots and ethidium bromide, Carbon (2025). DOI: 10.1016/j.carbon.2025.120222

    Provided by
    University of Jyväskylä


    Citation:
    Label-free fluorosensor detects enteroviral RNA with high selectivity and sensitivity (2025, April 4)
    retrieved 6 April 2025
    from

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
    part may be reproduced without the written permission. The content is provided for information purposes only.





    Source link

    detects enteroviral fluorosensor High Labelfree RNA selectivity sensitivity
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.