Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Training a Model on Multiple GPUs with Data Parallelism

    December 28, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Enhanced PLA-Curcumin Nanofibers: Wound Dressing Innovation
    Nanotechnology

    Enhanced PLA-Curcumin Nanofibers: Wound Dressing Innovation

    big tee tech hubBy big tee tech hubApril 25, 2025033 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Enhanced PLA-Curcumin Nanofibers: Wound Dressing Innovation
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


    In a recent article published in Scientific Reports, researchers presented a composite wound dressing composed of polylactic acid (PLA), curcumin, and carbon nanotubes (CNTs), designed to improve mechanical strength and antibacterial activity.

    The dressing was fabricated using electrospinning, with CNTs incorporated to enhance curcumin release and sustain antibacterial effectiveness through nanoscale structural control.

    Enhanced PLA-Curcumin Nanofibers: Wound Dressing Innovation

    Image Credit: BBbirdZ/Shutterstock.com

    Background

    Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber scaffolds, particularly those based on biocompatible polymers like PLA, provide high surface area and porosity, making them suitable for controlled drug delivery and tissue interaction.

    Curcumin, a bioactive compound derived from turmeric, has demonstrated anti-inflammatory and antibacterial properties. However, its use in wound care is limited by poor solubility and low bioavailability. CNTs offer complementary advantages: they possess intrinsic antibacterial activity and can improve the mechanical properties and drug release profiles of polymer-based systems.

    This study investigates the integration of CNTs into PLA-curcumin nanofibers to create a multifunctional wound dressing capable of both structural support and infection control.

    The Current Study

    The dressing was produced using electrospinning, a technique suitable for fabricating nanofibers with controlled morphology. PLA (molecular weight: 203,000 g/mol) was dissolved in dichloromethane, followed by the addition of curcumin to ensure uniform dispersion. CNTs were incorporated at varying concentrations to assess their effects on the material’s structural and functional properties.

    Electrospun nanofibers were collected using a standard setup with a controlled flow rate and fixed needle-to-collector distance. Characterization included Fourier-transform infrared spectroscopy (FTIR) for chemical analysis and scanning electron microscopy (SEM) for morphology. Tensile tests evaluated mechanical strength, while curcumin release profiles were analyzed through in vitro assays. Antibacterial performance was assessed using standard strains of Staphylococcus aureus and Escherichia coli.

    Results and Discussion

    Incorporating CNTs significantly improved the mechanical strength and thermal stability of the PLA-curcumin nanofibers. Tensile testing showed that even small additions of CNTs enhanced tensile strength compared to pure PLA. Drug release studies confirmed a controlled and sustained release of curcumin, with the rate modulated by CNT concentration. This effect was attributed to changes in scaffold porosity and microstructure.

    Antibacterial assays revealed that CNT-containing composites had a marked inhibitory effect on bacterial growth. The PLA-Cur-0.05 % CNT formulation showed the highest antibacterial activity, with a 78.95 % reduction in microbial growth. While curcumin alone showed limited antibacterial efficacy in the PLA matrix, CNTs appeared to support both dispersion and membrane-disruptive mechanisms, contributing to improved outcomes.

    Water absorption tests further supported the composite’s suitability for wound care. While PLA alone exhibited high water uptake, the addition of curcumin and CNTs reduced this absorption. A more moderate water uptake profile is advantageous for managing exudates without compromising the mechanical integrity of the dressing.

    Conclusion

    This study demonstrates the potential of CNT-enhanced PLA-curcumin nanofiber mats as multifunctional wound dressings. The combination of improved mechanical properties, antibacterial activity, and controlled drug release offers a promising platform for infection management and wound healing support. The design leverages nanostructure engineering to overcome the limitations of conventional materials and drug delivery systems.

    Future research should explore in vivo performance, scalability, and further refinement of the composite formulation. Optimizing component ratios and evaluating long-term biocompatibility will be key steps toward clinical application.

    Download your PDF copy now!

    Journal Reference

    Faal M., et al. (2025). Fabrication and evaluation of polylactic acid-curcumin containing carbon nanotubes (CNTs) wound dressing using electrospinning method with experimental and computational approaches. Scientific Reports. DOI: 10.1038/s41598-025-98393-2,

     



    Source link

    Dressing Enhanced Innovation Nanofibers PLACurcumin wound
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Probing the fundamental nature of the Higgs Boson – Physics World

    December 28, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Training a Model on Multiple GPUs with Data Parallelism

    December 28, 2025

    3D-Printed Cinema Film Camera Oozes Vintage Vibes

    December 28, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.