Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21(11):1004–60.
Kocabicak E, Temel Y, Höllig A, Falkenburger B, Tan SK. Current perspectives on deep brain stimulation for severe neurological and psychiatric disorders. Neuropsychiatr Dis Treat. 2015;11:1051–66.
Daskalakis ZJ. Theta-burst transcranial magnetic stimulation in depression: when less May be more. Brain. 2014;137(Pt 7):1860–2.
Nguyen T-D, Khanal S, Lee E, Choi J, Bohara G, Rimal N, Choi D-Y, Park S. Astaxanthin-loaded brain-permeable liposomes for parkinson’s disease treatment via antioxidant and anti-inflammatory responses. J Nanobiotechnol. 2025;23(1):78.
Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, Sharma G, Sederberg PB, Glenn BC, Mysiw WJ, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016;533(7602):247–50.
Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL, Sweet JA, Hoyen HA, Keith MW, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet. 2017;389(10081):1821–30.
Zhang H, Jiao L, Yang S, Li H, Jiang X, Feng J, Zou S, Xu Q, Gu J, Wang X, et al. Brain-computer interfaces: the innovative key to unlocking neurological conditions. Int J Surg. 2024;110(9):5745–62.
Wandelt SK, Bjånes DA, Pejsa K, Lee B, Liu C, Andersen RA. Representation of internal speech by single neurons in human supramarginal gyrus. Nat Hum Behav. 2024;8(6):1136–49.
Schiavone G, Kang X, Fallegger F, Gandar J, Courtine G, Lacour SP. Guidelines to study and develop soft electrode systems for neural stimulation. Neuron. 2020;108(2):238–58.
Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, et al. Reach and Grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–5.
Benabid AL, Costecalde T, Eliseyev A, Charvet G, Verney A, Karakas S, Foerster M, Lambert A, Morinière B, Abroug N, et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 2019;18(12):1112–22.
Wang X, Wu S, Yang H, Bao Y, Li Z, Gan C, Deng Y, Cao J, Li X, Wang Y, et al. Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity. Nat Commun. 2024;15(1):9442.
Casson AJ, Smith S, Duncan JS, Rodriguez-Villegas E. Wearable EEG: what is it, why is it needed and what does it entail? Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5867–70.
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents–EEG, ecog, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–20.
Lee JM, Pyo Y-W, Kim YJ, Hong JH, Jo Y, Choi W, Lin D, Park H-G. The ultra-thin, minimally invasive surface electrode array neuroweb for probing neural activity. Nat Commun. 2023;14(1):7088.
Ahnood A, Chambers A, Gelmi A, Yong K-T, Kavehei O. Semiconducting electrodes for neural interfacing: a review. Chem Soc Rev. 2023;52(4):1491–518.
Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–71.
Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ, Tyler-Kabara EC, Boninger ML, Collinger JL, Gaunt RA. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science. 2021;372(6544):831–6.
Hughes CL, Flesher SN, Weiss JM, Boninger M, Collinger JL, Gaunt RA. Perception of microstimulation frequency in human somatosensory cortex. Elife 2021, 10.
Kozai TDY, Catt K, Li X, Gugel ZV, Olafsson VT, Vazquez AL, Cui XT. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials. 2015;37:25–39.
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci. 2015;6(1):48–67.
Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng. 2017;1(11):862–77.
Sunwoo S-H, Han SI, Joo H, Cha GD, Kim D, Choi SH, Hyeon T. Kim D-HJM: advances in soft bioelectronics for brain research and clinical neuroengineering. 2020, 3(6):1923–47.
Li X, Song Y, Xiao G, He E, Xie J, Dai Y, Xing Y, Wang Y, Wang Y, Xu S, et al. PDMS-Parylene hybrid, flexible Micro-ECoG electrode array for Spatiotemporal mapping of epileptic electrophysiological activity from multicortical brain regions. ACS Appl Bio Mater. 2021;4(11):8013–22.
Khodagholy D, Gelinas JN, Thesen T, Doyle W, Devinsky O, Malliaras GG, Buzsáki G. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015;18(2):310–5.
Luan L, Wei X, Zhao Z, Siegel JJ, Potnis O, Tuppen CA, Lin S, Kazmi S, Fowler RA, Holloway S, et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci Adv. 2017;3(2):e1601966.
Yang Q, Wu B, Castagnola E, Pwint MY, Williams NP, Vazquez AL, Cui XT. Integrated microprism and microelectrode array for simultaneous electrophysiology and Two-Photon imaging across all cortical layers. Adv Healthc Mater. 2024;13(24):e2302362.
Kozai TDJM. The history and horizons of microscale neural interfaces. 2018, 9(9):445.
Maynard EM, Nordhausen CT, Normann RA. The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol. 1997;102(3):228–39.
Csicsvari J, Henze DA, Jamieson B, Harris KD, Sirota A, Barthó P, Wise KD, Buzsáki G. Massively parallel recording of unit and local field potentials with silicon-based electrodes. J Neurophysiol. 2003;90(2):1314–23.
Rousche PJ, Normann RA. Chronic recording capability of the Utah intracortical electrode array in Cat sensory cortex. J Neurosci Methods 1998, 82(1).
Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Instant neural control of a movement signal. Nature. 2002;416(6877):141–2.
Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F. Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices. 2009;11(2):453–66.
Webster P. The future of brain-computer interfaces in medicine. Nat Med. 2024;30(6):1508–9.
Yu Z, Bu T, Zhang Y, Jia S, Huang T, Liu JK. Robust decoding of rich dynamical visual scenes with retinal spikes. IEEE Trans Neural Netw Learn Syst 2024, PP.
Gao X, Wang Y, Chen X, Gao SJT. Interface, interaction, and intelligence in generalized brain–computer interfaces. 2021, 25(8):671–84.
Shin U, Ding C, Zhu B, Vyza Y, Trouillet A, Revol ECM, Lacour SP, Shoaran M. NeuralTree: A 256-Channel 0.227-µJ/Class versatile neural activity classification and Closed-Loop neuromodulation SoC. IEEE J Solid-State Circuits. 2022;57(11):3243–57.
Tsai C-W, Jiang R, Zhang L, Zhang M, Yoo J. Seizure-Cluster-Inception CNN (SciCNN): A Patient-Independent epilepsy tracking SoC with 0-Shot-Retraining. IEEE Trans Biomed Circuits Syst. 2023;17(6):1202–13.
Pulicharla MR. VJWJoAET Premani 2024 AI-powered neuroprosthetics for brain-computer interfaces (BCIs). Sciences 12 1 109–15.
Bennett C, Samikkannu M, Mohammed F, Dietrich WD, Rajguru SM, Prasad A. Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants. Biomaterials 2018, 164.
Patrick E, Orazem ME, Sanchez JC, Nishida T. Corrosion of tungsten microelectrodes used in neural recording applications. J Neurosci Methods. 2011;198(2):158–71.
Zhang EN, Clément JP, Alameri A, Ng A, Kennedy TE, Juncker DJAMT. Mechanically matched silicone brain implants reduce brain foreign body response. 2021, 6(3):2000909.
Kozai TDY, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater. 2012;11(12):1065–73.
Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç, et al. Fully integrated silicon probes for high-density recording of neural activity. Nature. 2017;551(7679):232–6.
Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem AB, Grosmark A, Belluscio M, Denfield GH, Ecker AS, et al. Spike sorting for large, dense electrode arrays. Nat Neurosci. 2016;19(4):634–41.
Chung JE, Joo HR, Fan JL, Liu DF, Barnett AH, Chen S, Geaghan-Breiner C, Karlsson MP, Karlsson M, Lee KY et al. High-Density, Long-Lasting, and Multi-region electrophysiological recordings using polymer electrode arrays. Neuron 2019, 101(1).
Anderson L, Antkowiak P, Asefa A, Ballard A, Bansal T, Bello A, Berne B, Bowsher K, Blumenkopf B, Broverman I, et al. FDA regulation of neurological and physical medicine devices: access to safe and effective neurotechnologies for all Americans. Neuron. 2016;92(5):943–8.
Welle C, Krauthamer, VJIp. FDA regulation of invasive neural recording electrodes: a daunting task for medical innovators. 2012, 3(2):37–41.
Obidin N, Tasnim F, Dagdeviren C. The future of neuroimplantable devices: A materials science and regulatory perspective. Adv Mater. 2020;32(15):e1901482.
Steins H, Mierzejewski M, Brauns L, Stumpf A, Kohler A, Heusel G, Corna A, Herrmann T, Jones PD, Zeck G, et al. A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine. Microsyst Nanoeng. 2022;8:131.
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Adv Mater. 2014;26(12):1846–85.
Boehler C, Stieglitz T, Asplund M. Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials. 2015;67:346–53.
Allen NJ, Barres BA. Neuroscience: Glia – more than just brain glue. Nature. 2009;457(7230):675–7.
Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab. 2003;23(2):137–49.
Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36(2):180–90.
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010, 119(1).
Bennett C, Mohammed F, Álvarez-Ciara A, Nguyen MA, Dietrich WD, Rajguru SM, Streit WJ, Prasad A. Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response. Biomaterials. 2019;188:144–59.
Ferguson M, Sharma D, Ross D, Zhao F. A critical review of microelectrode arrays and strategies for improving neural interfaces. Adv Healthc Mater. 2019;8(19):e1900558.
Norden DM, Trojanowski PJ, Walker FR, Godbout JP. Insensitivity of astrocytes to Interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain. Neurobiol Aging. 2016;44:22–41.
Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation. Neuron. 2020;108(4):608–22.
Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.
Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem. 2021;158(3):621–39.
Yang Q-Q, Zhou J-W. Neuroinflammation in the central nervous system: symphony of glial cells. Glia. 2019;67(6):1017–35.
Baumann N, Pham-Dinh D. Biology of oligodendrocyte and Myelin in the mammalian central nervous system. Physiol Rev. 2001;81(2):871–927.
Chen K, Wellman SM, Yaxiaer Y, Eles JR, Kozai TD. In vivo Spatiotemporal patterns of oligodendrocyte and Myelin damage at the neural electrode interface. Biomaterials. 2021;268:120526.
Wellman SM, Guzman K, Stieger KC, Brink LE, Sridhar S, Dubaniewicz MT, Li L, Cambi F, Kozai TDY. Cuprizone-induced oligodendrocyte loss and demyelination impairs recording performance of chronically implanted neural interfaces. Biomaterials. 2020;239:119842.
Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12(2):188–96.
Liu L, Wang D, Luo Y, Liu Y, Guo Y, Yang G-Z, Qiu G. Intraoperative assessment of microimplantation-induced acute brain inflammation with titanium oxynitride-based plasmonic biosensor. Biosens Bioelectron. 2024;264:116664.
Fong JS, Alexopoulos AV, Bingaman WE, Gonzalez-Martinez J, Prayson RA. Pathologic findings associated with invasive EEG monitoring for medically intractable epilepsy. Am J Clin Pathol. 2012;138(4):506–10.
Thielen B, Xu H, Fujii T, Rangwala SD, Jiang W, Lin M, Kammen A, Liu C, Selvan P, Song D et al. Making a case for endovascular approaches for neural recording and stimulation. J Neural Eng 2023, 20(1).
Michelson NJ, Vazquez AL, Eles JR, Salatino JW, Purcell EK, Williams JJ, Cui XT, Kozai TDY. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface. J Neural Eng. 2018;15(3):033001.
Ravikumar M, Sunil S, Black J, Barkauskas DS, Haung AY, Miller RH, Selkirk SM, Capadona JR. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes. Biomaterials. 2014;35(28):8049–64.
Eles JR, Vazquez AL, Snyder NR, Lagenaur C, Murphy MC, Kozai TDY, Cui XT. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials. 2017;113:279–92.
Petty MA, Lo EH. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 2002;68(5):311–23.
McLarnon JG. A Leaky Blood-Brain Barrier to Fibrinogen Contributes to Oxidative Damage in Alzheimer’s Disease. Antioxid (Basel) 2021, 11(1).
Rodrigues RO, Shin S-R, Bañobre-López M. Brain-on-a-chip: an emerging platform for studying the nanotechnology-biology interface for neurodegenerative disorders. J Nanobiotechnol. 2024;22(1):573.
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191–201.
Wellman SM, Li L, Yaxiaer Y, McNamara I, Kozai TDY. Revealing Spatial and Temporal patterns of cell death, glial proliferation, and Blood-Brain barrier dysfunction around implanted intracortical neural interfaces. Front Neurosci. 2019;13:493.
Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants – a review of the implications for the design of Immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–709.
Sharon A, Jankowski MM, Shmoel N, Erez H, Spira ME. Inflammatory foreign body response induced by Neuro-Implants in rat cortices depleted of resident microglia by a CSF1R inhibitor and its implications. Front Neurosci. 2021;15:646914.
Macauley SL, Pekny M, Sands MS. The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci. 2011;31(43):15575–85.
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo Spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials. 2022;289:121784.
Kozai TDY, Vazquez AL, Weaver CL, Kim S-G, Cui XT. In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J Neural Eng. 2012;9(6):066001.
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A materials roadmap to functional neural interface design. Adv Funct Mater 2018, 28(12).
Lee H, Bellamkonda RV, Sun W, Levenston ME. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J Neural Eng. 2005;2(4):81–9.
Karumbaiah L, Norman SE, Rajan NB, Anand S, Saxena T, Betancur M, Patkar R, Bellamkonda RV. The upregulation of specific Interleukin (IL) receptor antagonists and Paradoxical enhancement of neuronal apoptosis due to electrode induced strain and brain micromotion. Biomaterials. 2012;33(26):5983–96.
Nolta NF, Christensen MB, Crane PD, Skousen JL, Tresco PA. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials. 2015;53:753–62.
Potter KA, Buck AC, Self WK, Capadona JR. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. J Neural Eng. 2012;9(4):046020.
Chen K, Forrest AM, Burgos GG, Kozai TDY. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng 2024, 21(3).
Karumbaiah L, Saxena T, Carlson D, Patil K, Patkar R, Gaupp EA, Betancur M, Stanley GB, Carin L, Bellamkonda RV. Relationship between intracortical electrode design and chronic recording function. Biomaterials. 2013;34(33):8061–74.
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in huntington’s disease. Nat Med. 2023;29(11):2866–84.
Goodwin JL, Uemura E, Cunnick JE. Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Res. 1995;692(1–2):207–14.
Van Mil AHM, Spilt A, Van Buchem MA, Bollen ELEM, Teppema L, Westendorp RGJ, Blauw GJ. Nitric oxide mediates hypoxia-induced cerebral vasodilation in humans. J Appl Physiol (1985). 2002;92(3):962–6.
Mendiola AS, Ryu JK, Bardehle S, Meyer-Franke A, Ang KK-H, Wilson C, Baeten KM, Hanspers K, Merlini M, Thomas S, et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat Immunol. 2020;21(5):513–24.
Prasad A, Xue Q-S, Dieme R, Sankar V, Mayrand RC, Nishida T, Streit WJ, Sanchez JC. Abiotic-biotic characterization of pt/ir microelectrode arrays in chronic implants. Front Neuroeng. 2014;7:2.
Ereifej ES, Rial GM, Hermann JK, Smith CS, Meade SM, Rayyan JM, Chen K, Feng H. Capadona jrjfib, biotechnology: implantation of neural probes in the brain elicits oxidative stress. 2018, 6:9.
Prasad A, Xue Q-S, Sankar V, Nishida T, Shaw G, Streit WJ. Sanchez jcjjone: comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. 2012, 9(5):056015.
Mueller NN, Kim Y, Ocoko MYM, Dernelle P, Kale I, Patwa S, Hermoso AC, Chirra D, Capadona JR, Hess-Dunning AJJM et al. Effects of micromachining on anti-oxidant elution from a mechanically-adaptive polymer. 2024, 34(3):035009.
Jeong Y-C, Lee HE, Shin A, Kim D-G, Lee KJ, Kim D. Progress in Brain-Compatible interfaces with soft nanomaterials. Adv Mater. 2020;32(35):e1907522.
Adewole DO, Serruya MD, Wolf JA, Cullen DK. Bioactive neuroelectronic interfaces. Front Neurosci. 2019;13:269.
Wei S, Jiang A, Sun H, Zhu J, Jia S, Liu X, Xu Z, Zhang J, Shang Y, Fu X, et al. Shape-changing electrode array for minimally invasive large-scale intracranial brain activity mapping. Nat Commun. 2024;15(1):715.
Farina D, Vujaklija I, Sartori M, Kapelner T, Negro F, Jiang N, Bergmeister K, Andalib A, Principe J. Aszmann ocjnbe: man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. 2017, 1(2):0025.
Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci. 2019;20(6):330–45.
Betz T, Koch D, Lu Y-B, Franze K, Käs JA. Growth cones as soft and weak force generators. Proc Natl Acad Sci U S A. 2011;108(33):13420–5.
Franze K, Janmey PA, Guck J. Mechanics in neuronal development and repair. Annu Rev Biomed Eng. 2013;15:227–51.
Budday S, Ovaert TC, Holzapfel GA, Steinmann P, Kuhl, EJAoCMiE. Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. 2020, 27:1187–230.
Gilletti A, Muthuswamy J. Brain micromotion around implants in the rodent somatosensory cortex. J Neural Eng. 2006;3(3):189–95.
Boufidis D, Garg R, Angelopoulos E, Cullen DK, Vitale F. Bio-inspired electronics: soft, biohybrid, and living neural interfaces. Nat Commun. 2025;16(1):1861.
Carnicer-Lombarte A, Malliaras GG, Barone DG. The future of biohybrid regenerative bioelectronics. Adv Mater. 2025;37(3):e2408308.
Boulingre M, Portillo-Lara R, Green RA. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem Commun (Camb). 2023;59(100):14745–58.
Rochford AE, Carnicer-Lombarte A, Curto VF, Malliaras GG, Barone DG. When bio Meets technology: biohybrid neural interfaces. Adv Mater. 2020;32(15):e1903182.
Cobb MA, Badylak SF, Janas W, Simmons-Byrd A, Boop FA. Porcine small intestinal submucosa as a dural substitute. Surg Neurol 1999, 51(1).
Lok J, Leung W, Murphy S, Butler W, Noviski N, Lo EH. Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochir Suppl. 2011;111:63–9.
Faulk DM, Londono R, Wolf MT, Ranallo CA, Carruthers CA, Wildemann JD, Dearth CL, Badylak SF. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 2014;35(30):8585–95.
Oakes RS, Polei MD, Skousen JL, Tresco PA. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex. Biomaterials 2018, 154.
Ceyssens F, Deprez M, Turner N, Kil D, van Kuyck K, Welkenhuysen M, Nuttin B, Badylak S, Puers R. Extracellular matrix proteins as temporary coating for thin-film neural implants. J Neural Eng. 2017;14(1):014001.
Zhang L, Zhang F, Weng Z, Brown BN, Yan H, Ma XM, Vosler PS, Badylak SF, Dixon CE, Cui XT, et al. Effect of an inductive hydrogel composed of urinary bladder matrix upon functional recovery following traumatic brain injury. Tissue Eng Part A. 2013;19(17–18):1909–18.
Wu C, Liu A, Chen S, Zhang X, Chen L, Zhu Y, Xiao Z, Sun J, Luo H, Fan H. Cell-Laden electroconductive hydrogel simulating nerve matrix to deliver electrical cues and promote neurogenesis. ACS Appl Mater Interfaces. 2019;11(25):22152–63.
Chalmers E, Lee H, Zhu C, Liu XJCM. Increasing the conductivity and adhesion of polypyrrole hydrogels with electropolymerized polydopamine. 2019, 32(1):234–44.
Shu Q, Gu Y, Xia W, Lu X, Pang Y, Teng J, Liu B, Li YJCEJ. Injectable hydrogels for bioelectronics: A viable alternative to traditional hydrogels. 2024:153391.
Ohm Y, Pan C, Ford MJ, Huang X, Liao J, Majidi CJNE. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. 2021, 4(3):185–92.
Alizadeh R, Zarrintaj P, Kamrava SK, Bagher Z, Farhadi M, Heidari F, Komeili A, Gutiérrez TJ, Saeb MR. Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy. Carbohydr Polym. 2019;224:115161.
Cui Y, Zhang F, Chen G, Yao L, Zhang N, Liu Z, Li Q, Zhang F, Cui Z, Zhang K, et al. A stretchable and transparent electrode based on pegylated silk fibroin for in vivo Dual-Modal Neural-Vascular activity probing. Adv Mater. 2021;33(34):e2100221.
Ding J, Chen Z, Liu X, Tian Y, Jiang J, Qiao Z, Zhang Y, Xiao Z, Wei D, Sun J, et al. A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording. Mater Horiz. 2022;9(8):2215–25.
Gajendiran M, Choi J, Kim S-J, Kim K, Shin H, Koo H-J, Kim KJJI, Chemistry E. Conductive biomaterials for tissue engineering applications. 2017, 51:12–26.
Schroeder ME, Zurick KM, McGrath DE, Bernards MT. Multifunctional polyampholyte hydrogels with fouling resistance and protein conjugation capacity. Biomacromolecules. 2013;14(9):3112–22.
Zhi B, Song Q, Mao Y. Vapor deposition of polyionic nanocoatings for reduction of microglia adhesion. RSC Adv. 2018;8(9):4779–85.
Leung BK, Biran R, Underwood CJ, Tresco PA. Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials. 2008;29(23):3289–97.
Bjugstad KB, Lampe K, Kern DS, Mahoney M. Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: an analysis of the glial response across space and time. J Biomed Mater Res A. 2010;95(1):79–91.
Skousen JL, Bridge MJ, Tresco PA. A strategy to passively reduce neuroinflammation surrounding devices implanted chronically in brain tissue by manipulating device surface permeability. Biomaterials. 2015;36:33–43.
Yang Q, Wei T, Yin RT, Wu M, Xu Y, Koo J, Choi YS, Xie Z, Chen SW, Kandela I, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat Mater. 2021;20(11):1559–70.
Tang H, Li Y, Chen B, Chen X, Han Y, Guo M, Xia H-Q, Song R, Zhang X, Zhou J. In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise. ACS Nano. 2022;16(11):17931–47.
Cho KW, Sunwoo S-H, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim D-H. Soft bioelectronics based on nanomaterials. Chem Rev. 2022;122(5):5068–143.
Xu C, Yang Y, Gao W. Skin-interfaced sensors in digital medicine: from materials to applications. Matter. 2020;2(6):1414–45.
Ghane-Motlagh B, Javanbakht T, Shoghi F, Wilkinson KJ, Martel R, Sawan M. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells. Mater Sci Eng C Mater Biol Appl. 2016;68:642–50.
Rinoldi C, Ziai Y, Zargarian SS, Nakielski P, Zembrzycki K, Haghighat Bayan MA, Zakrzewska AB, Fiorelli R, Lanzi M, Kostrzewska-Księżyk A, et al. In vivo chronic brain cortex signal recording based on a soft conductive hydrogel biointerface. ACS Appl Mater Interfaces. 2023;15(5):6283–96.
Nam J, Lim H-K, Kim NH, Park JK, Kang ES, Kim Y-T, Heo C, Lee O-S, Kim S-G, Yun WS, et al. Supramolecular peptide Hydrogel-Based soft neural interface augments brain signals through a Three-Dimensional electrical network. ACS Nano. 2020;14(1):664–75.
Toda H, Suzuki T, Sawahata H, Majima K, Kamitani Y, Hasegawa I. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. NeuroImage. 2011;54(1):203–12.
Wang X, Xu M, Yang H, Jiang W, Jiang J, Zou D, Zhu Z, Tao C, Ni S, Zhou Z, et al. Ultraflexible neural electrodes enabled synchronized Long-Term dopamine detection and wideband chronic recording deep in brain. ACS Nano. 2024;18(50):34272–87.
Kim JU, Park H, Ok J, Lee J, Jung W, Kim J, Kim J, Kim S, Kim YH, Suh M, et al. Cerebrospinal Fluid-philic and Biocompatibility-Enhanced soft cranial window for Long-Term in vivo brain imaging. ACS Appl Mater Interfaces. 2022;14(13):15035–46.
Kim T-i, McCall JG, Jung YH, Huang X, Siuda ER, Li Y, Song J, Song YM, Pao HA, Kim R-H, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science. 2013;340(6129):211–6.
Guan S, Wang J, Gu X, Zhao Y, Hou R, Fan H, Zou L, Gao L, Du M, Li C, et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci Adv. 2019;5(3):eaav2842.
Abidian MR. Martin DCJAfm: Multifunctional nanobiomaterials for neural interfaces. 2009, 19(4):573–585.
Orlemann C, Boehler C, Kooijmans RN, Li B, Asplund M, Roelfsema PR. Flexible polymer electrodes for stable prosthetic visual perception in mice. Adv Healthc Mater. 2024;13(15):e2304169.
Gao L, Wang J, Zhao Y, Li H, Liu M, Ding J, Tian H, Guan S, Fang Y. Free-Standing nanofilm electrode arrays for Long-Term stable neural interfacings. Adv Mater. 2022;34(5):e2107343.
Agorelius J, Tsanakalis F, Friberg A, Thorbergsson PT, Pettersson LME, Schouenborg J. An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation-initial evaluation in cortex cerebri of awake rats. Front Neurosci. 2015;9:331.
Vitale F, Shen W, Driscoll N, Burrell JC, Richardson AG, Adewole O, Murphy B, Ananthakrishnan A, Oh H, Wang T, et al. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays. PLoS ONE. 2018;13(11):e0206137.
Laughlin SB, Sejnowski TJ. Communication in neuronal networks. Science. 2003;301(5641):1870–4.
Xu Y, Cui M, Patsis PA, Günther M, Yang X, Eckert K, Zhang Y. Reversibly assembled electroconductive hydrogel via a Host-Guest interaction for 3D cell culture. ACS Appl Mater Interfaces. 2019;11(8):7715–24.
Fabbro A, Scaini D, León V, Vázquez E, Cellot G, Privitera G, Lombardi L, Torrisi F, Tomarchio F, Bonaccorso F, et al. Graphene-Based interfaces do not alter target nerve cells. ACS Nano. 2016;10(1):615–23.
Thrivikraman G, Madras G, Basu B. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials. 2014;35(24):6219–35.
Rui Y, Liu J, Wang Y, Yang CJM. Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. 2011, 17(3):437–42.
Sanders JE, Stiles CE, Hayes CL. Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density. J Biomed Mater Res. 2000;52(1):231–7.
Zhang H, Patel PR, Xie Z, Swanson SD, Wang X, Kotov NA. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite. ACS Nano. 2013;7(9):7619–29.
Boehler C, Carli S, Fadiga L, Stieglitz T, Asplund M. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat Protoc. 2020;15(11):3557–78.
Kim D-H, Wiler JA, Anderson DJ, Kipke DR, Martin DC. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater. 2010;6(1):57–62.
Turco A, Mazzotta E, Di Franco C, Santacroce MV, Scamarcio G, Monteduro AG, Primiceri E. Malitesta cjjosse: templateless synthesis of polypyrrole nanowires by non-static solution-surface electropolymerization. 2016, 20:2143–51.
Green R, Abidian MR. Conducting polymers for neural prosthetic and neural interface applications. Adv Mater. 2015;27(46):7620–37.
Robbins EM, Wong B, Pwint MY, Salavatian S, Mahajan A, Cui XT. Improving sensitivity and longevity of in vivo glutamate sensors with electrodeposited nanopt. ACS Appl Mater Interfaces. 2024;16(31):40570–80.
Chapman CAR, Chen H, Stamou M, Biener J, Biener MM, Lein PJ, Seker E. Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl Mater Interfaces. 2015;7(13):7093–100.
Cruz A, Casañ-Pastor NJTSF. Graded conducting titanium–iridium oxide coatings for bioelectrodes in neural systems. 2013, 534:316–24.
Hong W, Lee JW, Kim D, Hwang Y, Lee J, Kim J, Hong N, Kwon HJ, Jang JE, Punga ARJAFM. Ultrathin gold microelectrode array using polyelectrolyte multilayers for flexible and transparent electro-optical neural interfaces. 2022, 32(9):2106493.
Lim C, Park C, Sunwoo S-H, Kim YG, Lee S, Han SI, Kim D, Kim JH, Kim D-H, Hyeon T. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano. 2022;16(7):10431–42.
Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 2015;86(1):207–17.
Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney PJC. Gold nanorods: synthesis, characterization and applications. 2005, 249(17–18):1870–901.
Perrault SD, Chan WCW. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 Nm. J Am Chem Soc. 2009;131(47):17042–3.
Eom K, Kim J, Choi JM, Kang T, Chang JW, Byun KM, Jun SB, Kim SJ. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small. 2014;10(19):3853–7.
Yong J, Needham K, Brown WGA, Nayagam BA, McArthur SL, Yu A, Stoddart PR. Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv Healthc Mater. 2014;3(11):1862–8.
Dominguez-Paredes D, Jahanshahi A, Kozielski KL. Translational considerations for the design of untethered nanomaterials in human neural stimulation. Brain Stimul. 2021;14(5):1285–97.
Paviolo C, Haycock JW, Yong J, Yu A, Stoddart PR, McArthur SL. Laser exposure of gold nanorods can increase neuronal cell outgrowth. Biotechnol Bioeng. 2013;110(8):2277–91.
Kojabad ZD, Shojaosadati SA, Firoozabadi SM, Hamedi SJJSSE. Polypyrrole nanotube modified by gold nanoparticles for improving the neural microelectrodes. 2019, 23:1533–9.
Seker E, Berdichevsky Y, Staley KJ, Yarmush ML. Microfabrication-compatible nanoporous gold foams as biomaterials for drug delivery. Adv Healthc Mater. 2012;1(2):172–6.
Wan C, Feng Z, Gao Y, Yu J, Wu Z, Yang Z, Mao S, Guo R, Huo W, Huang X. Self-Healing and Shear-Stiffening electrodes for wearable biopotential sensing and gesture recognition. ACS Sens. 2024;9(10):5253–63.
Du X, Jiang W, Zhang Y, Qiu J, Zhao Y, Tan Q, Qi S, Ye G, Zhang W, Liu N. Transparent and stretchable graphene electrode by intercalation doping for epidermal electrophysiology. ACS Appl Mater Interfaces. 2020;12(50):56361–71.
Li J, Cheng Y, Gu M, Yang Z, Zhan L, Du Z. Sensing and stimulation applications of carbon nanomaterials in implantable Brain-Computer interface. Int J Mol Sci 2023, 24(6).
Jia C, Lin Z, Huang Y, Duan X. Nanowire electronics: from nanoscale to macroscale. Chem Rev. 2019;119(15):9074–135.
Kim J, Lee Y, Kang M, Hu L, Zhao S, Ahn J-H. 2D materials for Skin-Mountable electronic devices. Adv Mater. 2021;33(47):e2005858.
Dong M, Chen P, Zhou K, Marroquin JB, Liu M, Thomas S, Coleman HA, Li D, Fallon JB, Majumder MJCEJ. Flexible neural recording electrodes based on reduced graphene oxide interfaces. 2023, 478:147067.
Kim T, Park J, Sohn J, Cho D, Jeon S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for All-in-One ECG electrodes. ACS Nano. 2016;10(4):4770–8.
Kuzum D, Takano H, Shim E, Reed JC, Juul H, Richardson AG, de Vries J, Bink H, Dichter MA, Lucas TH, et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun. 2014;5:5259.
Maughan J, Gouveia PJ, Gonzalez JG, Leahy LM, Woods I, O’Connor C, McGuire T, Garcia JR, O’ Shea DG, McComish SF et al. Collagen/pristine graphene as an electroconductive interface material for neuronal medical device applications. Appl Mater Today 2022, 29.
Liu W, Mei T, Cao Z, Li C, Wu Y, Wang L, Xu G, Chen Y, Zhou Y, Wang S, et al. Bioinspired carbon nanotube-based nanofluidic ionic transistor with ultrahigh switching capabilities for logic circuits. Sci Adv. 2024;10(11):eadj7867.
Burblies N, Schulze J, Schwarz H-C, Kranz K, Motz D, Vogt C, Lenarz T, Warnecke A, Behrens P. Coatings of different carbon nanotubes on platinum electrodes for neuronal devices: preparation, cytocompatibility and interaction with spiral ganglion cells. PLoS ONE. 2016;11(7):e0158571.
Guitchounts G, Markowitz JE, Liberti WA, Gardner TJ. A carbon-fiber electrode array for long-term neural recording. J Neural Eng. 2013;10(4):046016.
Salatino JW, Winter BM, Drazin MH, Purcell EK. Functional remodeling of subtype-specific markers surrounding implanted neuroprostheses. J Neurophysiol. 2017;118(1):194–202.
Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J, Lu C, Hou C, Wei L, Fink Y, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol. 2015;33(3):277–84.
Degenhart AD, Eles J, Dum R, Mischel JL, Smalianchuk I, Endler B, Ashmore RC, Tyler-Kabara EC, Hatsopoulos NG, Wang W, et al. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J Neural Eng. 2016;13(4):046019.
Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130(Pt 2):535–47.
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.
Barrese JC, Rao N, Paroo K, Triebwasser C, Vargas-Irwin C, Franquemont L, Donoghue JP. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J Neural Eng. 2013;10(6):066014.
Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacson M, Craighead H. Cerebral astrocyte response to micromachined silicon implants. Exp Neurol. 1999;156(1):33–49.
He W, McConnell GC, Bellamkonda RV. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J Neural Eng. 2006;3(4):316–26.
Woeppel KM, Cui XT. Nanoparticle and biomolecule surface modification synergistically increases neural electrode recording yield and minimizes inflammatory host response. Adv Healthc Mater. 2021;10(16):e2002150.
Zhou F, He Y, Zhang M, Gong X, Liu X, Tu R, Yang B. Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and targeting neuroinflammation in intracerebral hemorrhage. J Nanobiotechnol. 2024;22(1):731.
Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release. 2006;110(3):531–41.
Wang Y, Han M, Jing L, Jia Q, Lv S, Xu Z, Liu J, Cai X. Enhanced neural activity detection with microelectrode arrays modified by drug-loaded calcium alginate/chitosan hydrogel. Biosens Bioelectron. 2025;267:116837.
Gutowski SM, Shoemaker JT, Templeman KL, Wei Y, Latour RA, Bellamkonda RV, LaPlaca MC, García AJ. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes. Biomaterials. 2015;44:55–70.
Schmidt E-M, Linz B, Diekelmann S, Besedovsky L, Lange T, Born J. Effects of an interleukin-1 receptor antagonist on human sleep, sleep-associated memory consolidation, and blood monocytes. Brain Behav Immun. 2015;47:178–85.
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials. 2016;87:157–69.
Kolarcik CL, Bourbeau D, Azemi E, Rost E, Zhang L, Lagenaur CF, Weber DJ, Cui XT. In vivo effects of L1 coating on inflammation and neuronal health at the electrode-tissue interface in rat spinal cord and dorsal root ganglion. Acta Biomater. 2012;8(10):3561–75.
Capeletti LB, Cardoso MB, Dos Santos JHZ, He W. Hybrid thin film Organosilica Sol-Gel coatings to support neuronal growth and limit astrocyte growth. ACS Appl Mater Interfaces. 2016;8(41):27553–63.
Gao W, Zhang Y, Liu S, Qin YJNE. High-precision strategy for piezoelectric characterization of nano/microwire. 2024, 123:109392.
Zhu H, Sun Z, Wang X, Xia H. A High-Performance strain sensor for the detection of human motion and subtle strain based on liquid metal microwire. Nanomaterials (Basel) 2024, 14(2).
Misra A, Burke JF, Ramayya AG, Jacobs J, Sperling MR, Moxon KA, Kahana MJ, Evans JJ, Sharan AD. Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial Temporal lobe. J Neural Eng. 2014;11(2):026013.
Zhou T, Hong G, Fu T-M, Yang X, Schuhmann TG, Viveros RD, Lieber CM. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc Natl Acad Sci U S A. 2017;114(23):5894–9.
