Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    The death of reactive IT: How predictive engineering will redefine cloud performance in 10 years

    February 11, 2026

    Oceanhorn 3: Legend of the Shadow Sea launches March 5 on Apple Arcade

    February 11, 2026

    The danger of glamourizing one shots

    February 11, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Event-driven retinomorphic photodiode with bio-plausible temporal dynamics
    Nanotechnology

    Event-driven retinomorphic photodiode with bio-plausible temporal dynamics

    big tee tech hubBy big tee tech hubJuly 23, 2025007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Event-driven retinomorphic photodiode with bio-plausible temporal dynamics
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Raut, R., Krit, S. & Chatterjee, P. Machine Vision for Industry 4.0: Applications and Case Studies (CRC Press, 2022).

  • Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).


    Google Scholar
     

  • Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).


    Google Scholar
     

  • Jang, H. et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).


    Google Scholar
     

  • Ma, S. et al. A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors. Sci. Adv. 8, eabn9328 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B. & Delbruck, T. Retinomorphic event-based vision sensors: bioinspired cameras with spiking output. Proc. IEEE 102, 1470–1484 (2014).


    Google Scholar
     

  • Gehrig, D. & Scaramuzza, D. Low-latency automotive vision with event cameras. Nature 629, 1034–1040 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paredes-Vallés, F. et al. Fully neuromorphic vision and control for autonomous drone flight. Sci. Robot. 9, eadi0591 (2024).

    PubMed 

    Google Scholar
     

  • Dudek, P. et al. Sensor-level computer vision with pixel processor arrays for agile robots. Sci. Robot. 7, eabl7755 (2022).

    PubMed 

    Google Scholar
     

  • Gallego, G. et al. Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 154–180 (2022).

    PubMed 

    Google Scholar
     

  • Xiao, K., Cui, X., Liu, K., Cui, X. & Wang, X. An SNN-based and neuromorphic-hardware-implementable noise filter with self-adaptive time window for event-based vision sensor. In 2021 International Joint Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2021).

  • Chakravarthi, B., Verma, A. A., Daniilidis, K., Fermuller, C. & Yang, Y. Recent event camera innovations: a survey. In Computer Vision–ECCV 2024 Workshops (eds Del Bue, A., Canton, C., Pont-Tuset, J. & Tommasi, T.) 342–376 (Springer, 2025).

  • Perot, E., de Tournemire, P., Nitti, D., Masci, J. & Sironi, A. Learning to detect objects with a 1 megapixel event camera. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 16639–16652 (Curran, 2020).

  • Schon, G. et al. A 320 × 320 1/5″ BSI-CMOS stacked event sensor for low-power vision applications. In 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 1–2 (IEEE, 2023).

  • Wu, Y. et al. A spiking artificial vision architecture based on fully emulating the human vision. Adv. Mater. 36, 2312094 (2024).

    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 6, 870–878 (2023).


    Google Scholar
     

  • Wu, S.-E. et al. Retinomorphic motion detector fabricated with organic infrared semiconductors. Adv. Sci. 10, 2304688 (2023).

    CAS 

    Google Scholar
     

  • Rogers, K. The Eye: the Physiology of Human Perception (Rosen, 2010).

  • Gollisch, T. & Meister, M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandel, E., Koester, J. D., Mack, S. H. & Siegelbaum, S. Principles of Neural Science 6th edn (McGraw Hill, 2021).

  • Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, U. S., Mahroo, O. A., Mollon, J. D. & Yu-Wai-Man, P. Retinal ganglion cells—diversity of cell types and clinical relevance. Front. Neurol. 12, 661938 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. R., Lee, D. & Oh, J. H. A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 33, 2100119 (2021).

    CAS 

    Google Scholar
     

  • Chen, K. et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17, 629–637 (2023).

    CAS 

    Google Scholar
     

  • He, Z. et al. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4, 522–529 (2021).

    CAS 

    Google Scholar
     

  • Li, L. et al. Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nat. Commun. 15, 6261 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    PubMed 

    Google Scholar
     

  • Lee, Y. et al. Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 4, eaat7387 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, H. & van Dijken, S. Dynamic machine vision with retinomorphic photomemristor–reservoir computing. Nat. Commun. 14, 2169 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolb, H. in Webvision: The Organization of the Retina and Visual System (eds. Kolb, H. et al.) (University of Utah Health Sciences Center, 1995).

  • Baylor, D. How photons start vision. Proc. Natl Acad. Sci. USA 93, 560–565 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnapf, J. L. & Copenhagen, D. R. Differences in the kinetics of rod and cone synaptic transmission. Nature 296, 862–864 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • DeVries, S. H. & Schwartz, E. A. Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 397, 157–160 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Baden, T., Berens, P., Bethge, M. & Euler, T. Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr. Biol. 23, 48–52 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Maguire, G. Rapid desensitization converts prolonged glutamate release into a transient EPSC at ribbon synapses between retinal bipolar and amacrine cells. Eur. J. Neurosci. 11, 353–362 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Torre, V., Ashmore, J., Lamb, T. & Menini, A. Transduction and adaptation in sensory receptor cells. J. Neurosci. 15, 7757–7768 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thoreson, W. B., Babai, N. & Bartoletti, T. M. Feedback from horizontal cells to rod photoreceptors in vertebrate retina. J. Neurosci. 28, 5691–5695 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smirnakis, S. M., Berry, M. J., Warland, D. K., Bialek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).

    CAS 

    Google Scholar
     

  • Münch, T. A. et al. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12, 1308–1316 (2009).

    PubMed 

    Google Scholar
     

  • Shapley, R. & Enroth-Cugell, C. Visual adaptation and retinal gain controls. Prog. Retin. Res. 3, 263–346 (1984).


    Google Scholar
     

  • Lee, B. B., Pokorny, J., Smith, V. C., Martin, P. R. & Valbergt, A. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J. Opt. Soc. Am. A 7, 2223–2236 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Florey, E. in From Neuron to Action (eds. Deecke, L. et al.) 413–419 (Springer, 1990).

  • Wang, J. et al. Physical insights into non-fullerene organic photovoltaics. Nat. Rev. Phys. 1, 365–381 (2024).


    Google Scholar
     

  • Watson, A. B. in Handbook of Perception and Human Performance Vol. 1 (eds Boff, K. R. et al.) Chap. 6 (Wiley-Interscience, 1986).

  • Lian, J., Vatansever, Z., Noshad, M. & Brandt-Pearce, M. Indoor visible light communications, networking, and applications. J. Phys.: Photon. 1, 012001 (2019).


    Google Scholar
     

  • Adiono, T. & Fuada, S. Optical interference noise filtering over visible light communication system utilizing analog high-pass filter circuit. In 2017 International Symposium on Nonlinear Theory and Its Applications (eds Ueta, T. et al.) 616–619 (IEICE, 2017).

  • Normann, R. A. & Werblin, F. S. Control of retinal sensitivity: I. Light and dark adaptation of vertebrate rods and cones. J. Gen. Physiol. 63, 37–61 (1974).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, D. H. Adaptation effects on spatio-temporal sine-wave thresholds. Vis. Res. 12, 89–101, IN1 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Huseynova, G. et al. Benzyl viologen as an n-type dopant for organic semiconductors. Org. Electron. 62, 572–580 (2018).

    CAS 

    Google Scholar
     

  • Lu, G., Shen, Z., Wang, H., Bu, L. & Lu, G. Optical interference on the measurement of film-depth-dependent light absorption spectroscopy and a correction approach. Rev. Sci. Instrum. 94, 023907 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 21, 4500–4507 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Rebecq, H., Ranftl, R., Koltun, V. & Scaramuzza, D. High speed and high dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1964–1980 (2021).

    PubMed 

    Google Scholar
     

  • Code for the paper “High Speed and High Dynamic Range Video with an Event Camera” (T-PAMI, 2019). GitHub (2019).



  • Source link

    bioplausible Dynamics Eventdriven photodiode retinomorphic temporal
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Super-moiré spin textures in twisted two-dimensional antiferromagnets

    February 10, 2026

    Issue 86

    February 10, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    The death of reactive IT: How predictive engineering will redefine cloud performance in 10 years

    February 11, 2026

    Oceanhorn 3: Legend of the Shadow Sea launches March 5 on Apple Arcade

    February 11, 2026

    The danger of glamourizing one shots

    February 11, 2026

    Research plots pathway to sustainable solar scale-up

    February 11, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    The death of reactive IT: How predictive engineering will redefine cloud performance in 10 years

    February 11, 2026

    Oceanhorn 3: Legend of the Shadow Sea launches March 5 on Apple Arcade

    February 11, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.