Piper RC, Katzmann DJ. Biogenesis and Function of Multivesicular Bodies. Annu Rev Cell Dev Biol [Internet]. 2007;23:519–47. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.
Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25:364–72. https://doi.org/10.1016/j.tcb.2015.01.004.
Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol [Internet]. 2018;19:213–28. Available from: https://doi.org/10.1038/nrm.2017.125
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Sci (80-). 2020;367:640.
Teng F, Fussenegger M. Shedding light on extracellular vesicle biogenesis and bioengineering. Adv Sci. 2021;8: 2003505.
Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x.
Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.
Pan B-T, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;3:329–39.
Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding CV, Melief CJM, et al. B lymphocytes secrete Antigen-presenting vesicles. J Exp Med. 1996;183:1161–72.
Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.
Bang C, Thum T. Exosomes. New players in cell-cell communication. Int J Biochem Cell Biol. 2012;44:2060–4. https://doi.org/10.1016/j.biocel.2012.08.007.
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.
Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.
Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: new molecular targets of diseases. Acta Pharmacol Sin. 2018;39:501–13.
Van Der Meel R, Fens MHAM, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J Control Release [Internet]. 2014;195:72–85. Available from: https://doi.org/10.1016/j.jconrel.2014.07.049
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials – An ISEV position paper. J Extracell Vesicles. 2015;4:30087.
Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: new nanotools for cancer treatment. Pharmacol Res. 2016;111:487–500. https://doi.org/10.1016/j.phrs.2016.07.006.
Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. J Control Release. 2016;244:167–83. https://doi.org/10.1016/j.jconrel.2016.07.054.
De Jong OG, Kooijmans SAA, Murphy DE, Jiang L, Evers MJW, Sluijter JPG, et al. Drug delivery with extracellular vesicles: from imagination to innovation. Acc Chem Res. 2019;52:1761–70.
Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SEL et al. Extracellular vesicles as drug delivery systems: Why and how? Adv Drug Deliv Rev [Internet]. 2020;159:332–43. Available from: https://doi.org/10.1016/j.addr.2020.04.004
Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020;27:585–98. https://doi.org/10.1080/10717544.2020.1748758.
Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748–59. https://doi.org/10.1038/s41565-021-00931-2.
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38:754–63. https://doi.org/10.1038/aps.2017.12.
Villa F, Quarto R, Tasso R. Extracellular vesicles as natural, safe and efficient drug delivery systems. Pharmaceutics. 2019;11:557.
Orefice NS. Development of new strategies using extracellular vesicles loaded with exogenous nucleic acid. Pharmaceutics. 2020;12:705.
Han Y, Jones TW, Dutta S, Zhu Y, Wang X, Narayanan SP, et al. Overview and update on methods for cargo loading into extracellular vesicles. Processes. 2021;9:356.
Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release [Internet]. 2014;192:262–70. Available from: https://doi.org/10.1016/j.jconrel.2014.07.042
Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, et al. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front Pharmacol. 2018;9:1116.
Melzer C, Rehn V, Yang Y, Bähre H, von der Ohe J, Hass R. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11060798.
Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 2017;266:8–16. https://doi.org/10.1016/j.jconrel.2017.09.013.
Kojima R, Bojar D, Rizzi G, Hamri GC, El, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun. 2018;9:1305.
Wang Q, Yu J, Kadungure T, Beyene J, Zhang H, Lu Q. Armms as a versatile platform for intracellular delivery of macromolecules. Nat Commun. 2018;9: 960. https://doi.org/10.1038/s41467-018-03390-x.
Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R, et al. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 2019;19:19–28.
Reshke R, Taylor JA, Savard A, Guo H, Rhym LH, Kowalski PS, et al. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat Biomed Eng. 2020;4:52–68. https://doi.org/10.1038/s41551-019-0502-4.
Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39:133–44.
Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y, et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther. 2011;19:395–9. https://doi.org/10.1038/mt.2010.254.
Ohno SI, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91.
Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, et al. Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J. 2017;19:475–86.
Ramon J, Xiong R, De Smedt SC, Raemdonck K, Braeckmans K. Vapor nanobubble-mediated photoporation constitutes a versatile intracellular delivery technology. Curr Opin Colloid Interface Sci. 2021;54: 101453. https://doi.org/10.1016/j.cocis.2021.101453.
Xiong R, Raemdonck K, Peynshaert K, Lentacker I, De Cock I, Demeester J, et al. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano. 2014;8:6288–96. https://doi.org/10.1021/nn5017742.
Wayteck L, Xiong R, Braeckmans K, De Smedt SC, Raemdonck K. Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells. J Control Release. 2017;267:154–62. https://doi.org/10.1016/j.jconrel.2017.08.002.
Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, et al. Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 2020;12: 185. https://doi.org/10.1007/s40820-020-00523-0.
Raes L, Pille M, Harizaj A, Goetgeluk G, Van Hoeck J, Stremersch S, et al. Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering. Mol Ther – Nucleic Acids. 2021;25:696–707.
Harizaj A, Wels M, Raes L, Stremersch S, Goetgeluk G, Brans T, et al. Photoporation with biodegradable polydopamine nanosensitizers enables safe and efficient delivery of mRNA in human T cells. Adv Funct Mater. 2021;31:2102472.
De Schutter E, Ramon J, Pfeuty B, De Tender C, Stremersch S, Raemdonck K, et al. Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis. Cell Mol Life Sci. 2022;79: 19. https://doi.org/10.1007/s00018-021-04078-0.
Xiong R, Joris F, Liang S, De Rycke R, Lippens S, Demeester J, et al. Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging. Nano Lett. 2016;16:5975–86. https://doi.org/10.1021/acs.nanolett.6b01411.
Fraire JC, Houthaeve G, Liu J, Raes L, Vermeulen L, Stremersch S, et al. Vapor nanobubble is the more reliable photothermal mechanism for inducing endosomal escape of siRNA without disturbing cell homeostasis. J Control Release. 2020;319:262–75. https://doi.org/10.1016/j.jconrel.2019.12.050.
Houthaeve G, Barriga GG-D, Stremersch S, De Keersmaecker H, Fraire J, Vandesompele J, et al. Transient nuclear lamin A/C accretion aids in recovery from vapor nanobubble-induced permeabilisation of the plasma membrane. Cell Mol Life Sci. 2022;79:23.
Xiong R, Sauvage F, Fraire JC, Huang C, De Smedt SC, Braeckmans K. Photothermal nanomaterial-mediated photoporation. Acc Chem Res. 2023;56(6):631–43.
Lapotko D. Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt Express. 2009;17:2538–56. https://doi.org/10.1364/OE.17.002538.
Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek RA, et al. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano. 2010;4:2109–23. https://doi.org/10.1021/nn1000222.
Xiong R, Drullion C, Verstraelen P, Demeester J, Skirtach AG, Abbadie C, et al. Fast spatial-selective delivery into live cells. J Control Release. 2017;266:198–204. https://doi.org/10.1016/j.jconrel.2017.09.033.
Xiong R, Hua D, Van Hoeck J, Berdecka D, Léger L, De Munter S, et al. Photothermal nanofibres enable safe engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.
Berdecka D, Minsart M, Lu T, Punj D, De Rycke R, Nikolić M et al. Photothermal nanofibers enable macromolecule delivery in unstimulated human T cells. Appl Mater Today. 2023;35:101991.
Hinnekens C, Harizaj A, Berdecka D, Aernout I, Shariati M, Peeters S et al. Photoporation of NK-92MI cells with biodegradable polydopamine nanosensitizers as a promising strategy for the generation of engineered NK cell therapies. Appl Mater Today [Internet]. 2024;40:102402. Available from: https://doi.org/10.1016/j.apmt.2024.102402
Hinnekens C, Ramon J, Birben M, Germeraad WTV, Harizaj A, De Velder M, et al. Gentle and efficient engineering of primary human NK cells by photoporation with polydopamine nanosensitizers. J Control Release. 2025;382: 113742.
Eyckerman S, Titeca K, Van Quickelberghe E, Cloots E, Verhee A, Samyn N, et al. Trapping mammalian protein complexes in viral particles. Nat Commun. 2016;7:11416.
Gould SJ, Booth AM, Hildreth JEK. The Trojan exosome hypothesis. PNAS. 2003;100:10592–7.
Fujii K, Hurley JH, Freed EO. Beyond Tsg101: the role of alix in escrting HIV-1. Nat Rev Microbiol. 2007;5:912–6.
Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun [Internet]. 2019;10:3288. Available from: http://www.nature.com/articles/s41467-019-11182-0
Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JEK, Gould SJ. Exosomes and HIV gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006;172:923–35.
Geeurickx E, Lippens L, Rappu P, De Geest BG, De Wever O, Hendrix A. Recombinant extracellular vesicles as biological reference material for method development, data normalization and assessment of (pre-)analytical variables. Nat Protoc. 2021;16:603–33. https://doi.org/10.1038/s41596-020-00446-5.
Raes L, Van Hecke C, Michiels J, Stremersch S, Fraire JC, Brans T, et al. Gold nanoparticle-mediated photoporation enables delivery of macromolecules over a wide range of molecular weights in human CD4 + T cells. Crystals. 2019;9: 411. https://doi.org/10.3390/cryst9080411.
Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30:3221–32229.
Stremersch S, Brans T, Braeckmans K, De Smedt S, Raemdonck K. Nucleic acid loading and fluorescent labeling of isolated extracellular vesicles requires adequate purification. Int J Pharm. 2018;548:783–92. https://doi.org/10.1016/j.ijpharm.2017.10.022.
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature. 2016;538:183–92. https://doi.org/10.1038/nature19764.
Stewart MP, Lorenz A, Dahlman J, Sahay G. Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers. WIREs Nanomed Nanobiotechnol. 2016;8:465–78. https://doi.org/10.1002/wnan.1377.
Stewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev. 2018;118:7409–531. https://doi.org/10.1021/acs.chemrev.7b00678.
Nordin JZ. Transfection reagents affect extracellular vesicle cargo transfer to recipient cells: the importance of appropriate controls in EV research. J Extracell Vesicles. 2022;11:e12227.
McCann J, Sosa-Miranda CD, Guo H, Reshke R, Savard A, Zardini Buzatto A, et al. Contaminating transfection complexes can masquerade as small extracellular vesicles and impair their delivery of RNA. J Extracell Vesicles. 2022;11:e12220.
McConnell RE, Youniss M, Gnanasambandam B, Shah P, Zhang W, Finn JD. Transfection reagent artefact likely accounts for some reports of extracellular vesicle function. J Extracell Vesicles. 2022;11:e12253.
Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, et al. Delivery of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Control Release. 2023;354:680–93. https://doi.org/10.1016/j.jconrel.2023.01.047.
Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020;4:69–83.
Ruan S, Erwin N, He M. Light-induced high-efficient cellular production of immune functional extracellular vesicles. J Extracell Vesicles. 2022;11:e12194.
Ageta H, Ageta-Ishihara N, Hitachi K, Karayel O, Onouchi T, Yamaguchi H, et al. UBL3 modification influences protein sorting to small extracellular vesicles. Nat Commun. 2018;9:3936.
Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Post-translational add-ons mark the path in exosomal protein sorting. Cell Mol Life Sci. 2018;75:1–19.
Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, et al. miR-1289 and zipcode-like sequence enrich mRNAs in microvesicles. Mol Ther – Nucleic Acids. 2012;1:e10.
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4: 2980.
Mukherjee K, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S, et al. Reversible HuR-microRNA binding controls extracellular export of miR‐122 and augments stress response. EMBO Rep. 2016;17:1184–203.
