Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Introducing checkpointless and elastic training on Amazon SageMaker HyperPod

    December 28, 2025

    Tesla Could Be Planning to Support Apple Car Keys

    December 28, 2025

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Pre-formation loading of extracellular vesicles with exogenous molecules using photoporation | Journal of Nanobiotechnology
    Nanotechnology

    Pre-formation loading of extracellular vesicles with exogenous molecules using photoporation | Journal of Nanobiotechnology

    big tee tech hubBy big tee tech hubAugust 9, 20250113 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Pre-formation loading of extracellular vesicles with exogenous molecules using photoporation | Journal of Nanobiotechnology
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Piper RC, Katzmann DJ. Biogenesis and Function of Multivesicular Bodies. Annu Rev Cell Dev Biol [Internet]. 2007;23:519–47. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf

  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    CAS 
    PubMed 

    Google Scholar
     

  • Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25:364–72. https://doi.org/10.1016/j.tcb.2015.01.004.

    CAS 
    PubMed 

    Google Scholar
     

  • Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol [Internet]. 2018;19:213–28. Available from: https://doi.org/10.1038/nrm.2017.125

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Sci (80-). 2020;367:640.


    Google Scholar
     

  • Teng F, Fussenegger M. Shedding light on extracellular vesicle biogenesis and bioengineering. Adv Sci. 2021;8: 2003505.

    CAS 

    Google Scholar
     

  • Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x.

    CAS 
    PubMed 

    Google Scholar
     

  • Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Pan B-T, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;3:329–39.


    Google Scholar
     

  • Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding CV, Melief CJM, et al. B lymphocytes secrete Antigen-presenting vesicles. J Exp Med. 1996;183:1161–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.

    CAS 
    PubMed 

    Google Scholar
     

  • Bang C, Thum T. Exosomes. New players in cell-cell communication. Int J Biochem Cell Biol. 2012;44:2060–4. https://doi.org/10.1016/j.biocel.2012.08.007.

    CAS 
    PubMed 

    Google Scholar
     

  • Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    PubMed 

    Google Scholar
     

  • Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: new molecular targets of diseases. Acta Pharmacol Sin. 2018;39:501–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Van Der Meel R, Fens MHAM, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J Control Release [Internet]. 2014;195:72–85. Available from: https://doi.org/10.1016/j.jconrel.2014.07.049

  • Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials – An ISEV position paper. J Extracell Vesicles. 2015;4:30087.

    PubMed 

    Google Scholar
     

  • Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: new nanotools for cancer treatment. Pharmacol Res. 2016;111:487–500. https://doi.org/10.1016/j.phrs.2016.07.006.

    CAS 
    PubMed 

    Google Scholar
     

  • Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. J Control Release. 2016;244:167–83. https://doi.org/10.1016/j.jconrel.2016.07.054.

    CAS 
    PubMed 

    Google Scholar
     

  • De Jong OG, Kooijmans SAA, Murphy DE, Jiang L, Evers MJW, Sluijter JPG, et al. Drug delivery with extracellular vesicles: from imagination to innovation. Acc Chem Res. 2019;52:1761–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SEL et al. Extracellular vesicles as drug delivery systems: Why and how? Adv Drug Deliv Rev [Internet]. 2020;159:332–43. Available from: https://doi.org/10.1016/j.addr.2020.04.004

  • Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020;27:585–98. https://doi.org/10.1080/10717544.2020.1748758.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748–59. https://doi.org/10.1038/s41565-021-00931-2.

    CAS 
    PubMed 

    Google Scholar
     

  • Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38:754–63. https://doi.org/10.1038/aps.2017.12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villa F, Quarto R, Tasso R. Extracellular vesicles as natural, safe and efficient drug delivery systems. Pharmaceutics. 2019;11:557.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orefice NS. Development of new strategies using extracellular vesicles loaded with exogenous nucleic acid. Pharmaceutics. 2020;12:705.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Y, Jones TW, Dutta S, Zhu Y, Wang X, Narayanan SP, et al. Overview and update on methods for cargo loading into extracellular vesicles. Processes. 2021;9:356.

    CAS 
    PubMed 

    Google Scholar
     

  • Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release [Internet]. 2014;192:262–70. Available from: https://doi.org/10.1016/j.jconrel.2014.07.042

  • Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, et al. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front Pharmacol. 2018;9:1116.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melzer C, Rehn V, Yang Y, Bähre H, von der Ohe J, Hass R. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11060798.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 2017;266:8–16. https://doi.org/10.1016/j.jconrel.2017.09.013.

    CAS 
    PubMed 

    Google Scholar
     

  • Kojima R, Bojar D, Rizzi G, Hamri GC, El, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun. 2018;9:1305.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Yu J, Kadungure T, Beyene J, Zhang H, Lu Q. Armms as a versatile platform for intracellular delivery of macromolecules. Nat Commun. 2018;9: 960. https://doi.org/10.1038/s41467-018-03390-x.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R, et al. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 2019;19:19–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Reshke R, Taylor JA, Savard A, Guo H, Rhym LH, Kowalski PS, et al. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat Biomed Eng. 2020;4:52–68. https://doi.org/10.1038/s41551-019-0502-4.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39:133–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y, et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther. 2011;19:395–9. https://doi.org/10.1038/mt.2010.254.

    CAS 
    PubMed 

    Google Scholar
     

  • Ohno SI, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, et al. Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J. 2017;19:475–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Ramon J, Xiong R, De Smedt SC, Raemdonck K, Braeckmans K. Vapor nanobubble-mediated photoporation constitutes a versatile intracellular delivery technology. Curr Opin Colloid Interface Sci. 2021;54: 101453. https://doi.org/10.1016/j.cocis.2021.101453.

    CAS 

    Google Scholar
     

  • Xiong R, Raemdonck K, Peynshaert K, Lentacker I, De Cock I, Demeester J, et al. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano. 2014;8:6288–96. https://doi.org/10.1021/nn5017742.

    CAS 
    PubMed 

    Google Scholar
     

  • Wayteck L, Xiong R, Braeckmans K, De Smedt SC, Raemdonck K. Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells. J Control Release. 2017;267:154–62. https://doi.org/10.1016/j.jconrel.2017.08.002.

    CAS 
    PubMed 

    Google Scholar
     

  • Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, et al. Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 2020;12: 185. https://doi.org/10.1007/s40820-020-00523-0.

    CAS 

    Google Scholar
     

  • Raes L, Pille M, Harizaj A, Goetgeluk G, Van Hoeck J, Stremersch S, et al. Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering. Mol Ther – Nucleic Acids. 2021;25:696–707.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harizaj A, Wels M, Raes L, Stremersch S, Goetgeluk G, Brans T, et al. Photoporation with biodegradable polydopamine nanosensitizers enables safe and efficient delivery of mRNA in human T cells. Adv Funct Mater. 2021;31:2102472.

    CAS 

    Google Scholar
     

  • De Schutter E, Ramon J, Pfeuty B, De Tender C, Stremersch S, Raemdonck K, et al. Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis. Cell Mol Life Sci. 2022;79: 19. https://doi.org/10.1007/s00018-021-04078-0.

    CAS 

    Google Scholar
     

  • Xiong R, Joris F, Liang S, De Rycke R, Lippens S, Demeester J, et al. Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging. Nano Lett. 2016;16:5975–86. https://doi.org/10.1021/acs.nanolett.6b01411.

    CAS 
    PubMed 

    Google Scholar
     

  • Fraire JC, Houthaeve G, Liu J, Raes L, Vermeulen L, Stremersch S, et al. Vapor nanobubble is the more reliable photothermal mechanism for inducing endosomal escape of siRNA without disturbing cell homeostasis. J Control Release. 2020;319:262–75. https://doi.org/10.1016/j.jconrel.2019.12.050.

    CAS 
    PubMed 

    Google Scholar
     

  • Houthaeve G, Barriga GG-D, Stremersch S, De Keersmaecker H, Fraire J, Vandesompele J, et al. Transient nuclear lamin A/C accretion aids in recovery from vapor nanobubble-induced permeabilisation of the plasma membrane. Cell Mol Life Sci. 2022;79:23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong R, Sauvage F, Fraire JC, Huang C, De Smedt SC, Braeckmans K. Photothermal nanomaterial-mediated photoporation. Acc Chem Res. 2023;56(6):631–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Lapotko D. Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt Express. 2009;17:2538–56. https://doi.org/10.1364/OE.17.002538.

    CAS 
    PubMed 

    Google Scholar
     

  • Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek RA, et al. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano. 2010;4:2109–23. https://doi.org/10.1021/nn1000222.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong R, Drullion C, Verstraelen P, Demeester J, Skirtach AG, Abbadie C, et al. Fast spatial-selective delivery into live cells. J Control Release. 2017;266:198–204. https://doi.org/10.1016/j.jconrel.2017.09.033.

    CAS 
    PubMed 

    Google Scholar
     

  • Xiong R, Hua D, Van Hoeck J, Berdecka D, Léger L, De Munter S, et al. Photothermal nanofibres enable safe engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berdecka D, Minsart M, Lu T, Punj D, De Rycke R, Nikolić M et al. Photothermal nanofibers enable macromolecule delivery in unstimulated human T cells. Appl Mater Today. 2023;35:101991.

  • Hinnekens C, Harizaj A, Berdecka D, Aernout I, Shariati M, Peeters S et al. Photoporation of NK-92MI cells with biodegradable polydopamine nanosensitizers as a promising strategy for the generation of engineered NK cell therapies. Appl Mater Today [Internet]. 2024;40:102402. Available from: https://doi.org/10.1016/j.apmt.2024.102402

  • Hinnekens C, Ramon J, Birben M, Germeraad WTV, Harizaj A, De Velder M, et al. Gentle and efficient engineering of primary human NK cells by photoporation with polydopamine nanosensitizers. J Control Release. 2025;382: 113742.

    CAS 
    PubMed 

    Google Scholar
     

  • Eyckerman S, Titeca K, Van Quickelberghe E, Cloots E, Verhee A, Samyn N, et al. Trapping mammalian protein complexes in viral particles. Nat Commun. 2016;7:11416.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould SJ, Booth AM, Hildreth JEK. The Trojan exosome hypothesis. PNAS. 2003;100:10592–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujii K, Hurley JH, Freed EO. Beyond Tsg101: the role of alix in escrting HIV-1. Nat Rev Microbiol. 2007;5:912–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun [Internet]. 2019;10:3288. Available from: http://www.nature.com/articles/s41467-019-11182-0

  • Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JEK, Gould SJ. Exosomes and HIV gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006;172:923–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geeurickx E, Lippens L, Rappu P, De Geest BG, De Wever O, Hendrix A. Recombinant extracellular vesicles as biological reference material for method development, data normalization and assessment of (pre-)analytical variables. Nat Protoc. 2021;16:603–33. https://doi.org/10.1038/s41596-020-00446-5.

    CAS 
    PubMed 

    Google Scholar
     

  • Raes L, Van Hecke C, Michiels J, Stremersch S, Fraire JC, Brans T, et al. Gold nanoparticle-mediated photoporation enables delivery of macromolecules over a wide range of molecular weights in human CD4 + T cells. Crystals. 2019;9: 411. https://doi.org/10.3390/cryst9080411.

    CAS 

    Google Scholar
     

  • Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30:3221–32229.


    Google Scholar
     

  • Stremersch S, Brans T, Braeckmans K, De Smedt S, Raemdonck K. Nucleic acid loading and fluorescent labeling of isolated extracellular vesicles requires adequate purification. Int J Pharm. 2018;548:783–92. https://doi.org/10.1016/j.ijpharm.2017.10.022.

    CAS 
    PubMed 

    Google Scholar
     

  • Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature. 2016;538:183–92. https://doi.org/10.1038/nature19764.

    CAS 
    PubMed 

    Google Scholar
     

  • Stewart MP, Lorenz A, Dahlman J, Sahay G. Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers. WIREs Nanomed Nanobiotechnol. 2016;8:465–78. https://doi.org/10.1002/wnan.1377.


    Google Scholar
     

  • Stewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev. 2018;118:7409–531. https://doi.org/10.1021/acs.chemrev.7b00678.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordin JZ. Transfection reagents affect extracellular vesicle cargo transfer to recipient cells: the importance of appropriate controls in EV research. J Extracell Vesicles. 2022;11:e12227.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCann J, Sosa-Miranda CD, Guo H, Reshke R, Savard A, Zardini Buzatto A, et al. Contaminating transfection complexes can masquerade as small extracellular vesicles and impair their delivery of RNA. J Extracell Vesicles. 2022;11:e12220.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McConnell RE, Youniss M, Gnanasambandam B, Shah P, Zhang W, Finn JD. Transfection reagent artefact likely accounts for some reports of extracellular vesicle function. J Extracell Vesicles. 2022;11:e12253.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, et al. Delivery of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Control Release. 2023;354:680–93. https://doi.org/10.1016/j.jconrel.2023.01.047.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020;4:69–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Ruan S, Erwin N, He M. Light-induced high-efficient cellular production of immune functional extracellular vesicles. J Extracell Vesicles. 2022;11:e12194.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ageta H, Ageta-Ishihara N, Hitachi K, Karayel O, Onouchi T, Yamaguchi H, et al. UBL3 modification influences protein sorting to small extracellular vesicles. Nat Commun. 2018;9:3936.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Post-translational add-ons mark the path in exosomal protein sorting. Cell Mol Life Sci. 2018;75:1–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, et al. miR-1289 and zipcode-like sequence enrich mRNAs in microvesicles. Mol Ther – Nucleic Acids. 2012;1:e10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4: 2980.

    PubMed 

    Google Scholar
     

  • Mukherjee K, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S, et al. Reversible HuR-microRNA binding controls extracellular export of miR‐122 and augments stress response. EMBO Rep. 2016;17:1184–203.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    exogenous extracellular Journal loading molecules Nanobiotechnology photoporation Preformation vesicles
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Probing the fundamental nature of the Higgs Boson – Physics World

    December 28, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Introducing checkpointless and elastic training on Amazon SageMaker HyperPod

    December 28, 2025

    Tesla Could Be Planning to Support Apple Car Keys

    December 28, 2025

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Introducing checkpointless and elastic training on Amazon SageMaker HyperPod

    December 28, 2025

    Tesla Could Be Planning to Support Apple Car Keys

    December 28, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.