Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    When hard work pays off

    October 14, 2025

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Israel Hamas deal: The hostage, ceasefire, and peace agreement could have a grim lesson for future wars.

    October 14, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Emission of nitrogen–vacancy centres in diamond shaped by topological photonic waveguide modes
    Nanotechnology

    Emission of nitrogen–vacancy centres in diamond shaped by topological photonic waveguide modes

    big tee tech hubBy big tee tech hubAugust 29, 2025057 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Emission of nitrogen–vacancy centres in diamond shaped by topological photonic waveguide modes
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018).


    Google Scholar
     

  • Doherty, M. W. et al. The nitrogen–vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS 

    Google Scholar
     

  • Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Bogdanov, S. I. et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas. Nano Lett. 18, 4837–4842 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).


    Google Scholar
     

  • Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen–vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).


    Google Scholar
     

  • Janitz, E., Bhaskar, M. K. & Childress, L. Cavity quantum electrodynamics with color centers in diamond. Optica 7, 1232–1252 (2020).


    Google Scholar
     

  • Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS 

    Google Scholar
     

  • Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).


    Google Scholar
     

  • Mansha, S. & Chong, Y. D. Robust edge states in amorphous gyromagnetic photonic lattices. Phys. Rev. B 96, 121405 (2017).


    Google Scholar
     

  • Xiao, M. & Fan, S. Photonic Chern insulator through homogenization of an array of particles. Phys. Rev. B 96, 100202 (2017).


    Google Scholar
     

  • Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time-and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).


    Google Scholar
     

  • Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).


    Google Scholar
     

  • Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120, 217401 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • He, C. et al. Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal. Appl. Phys. Lett. 96, 111111 (2010).


    Google Scholar
     

  • Ringel, M., Pletyukhov, M. & Gritsev, V. Topologically protected strongly correlated states of photons. N. J. Phys. 16, 113030 (2014).


    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, 1231 (2018).

    CAS 

    Google Scholar
     

  • Yoon, I. et al. Profiling the evanescent field of nanofiber waveguides using self-assembled polymer coatings. Nanoscale 5, 552 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sundaramurthy, A., Kino, G. S., Conley, N. R., Fromm, D. P. & Moerner, W. E. Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ampem-Lassen, E. et al. Nano-manipulation of diamond-based single photon sources. Opt. Express 17, 11287 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Drezet, A. et al. Near-field microscopy with a scanning nitrogen–vacancy color center in a diamond nanocrystal: a brief review. Micron 70, 55–63 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nat. Nanotechnol. 8, 175 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuche, A. et al. Near-field optical microscopy with a nanodiamond-based single-photon tip. Opt. Exp. 17, 19969 (2009).

    CAS 

    Google Scholar
     

  • Krachmalnicoff, V. et al. Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe. Opt. Exp. 21, 11536 (2013).

    CAS 

    Google Scholar
     

  • Gross, I. et al. Real-space imaging of non-collinear antiferro- magnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).


    Google Scholar
     

  • Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).


    Google Scholar
     

  • Tetienne, J.-P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen–vacancy center microscope. Science 344, 1366–1369 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Thiel, L. et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nat. Nanotechnol. 11, 677–681 (2016).


    Google Scholar
     

  • Zhou, T. X. et al. A magnon scattering platform. Proc. Natl Acad. Sci. USA 118, e2019473118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).


    Google Scholar
     

  • Laraoui, A. et al. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe. Nat. Commun. 6, 8954 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    PubMed 

    Google Scholar
     

  • Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. N. J. Phys. 18, 113013 (2016).


    Google Scholar
     

  • Auffèves, A., Gérard, J.-M. & Poizat, J.-P. Pure emitter dephasing: a resource for advanced solid-state single-photon sources. Phys. Rev. A 79, 053838 (2009).


    Google Scholar
     

  • Naesby, A., Suhr, T., Kristensen, P. T. & Mork, J. Influence of pure dephasing on emission spectra from single photon sources. Phys. Rev. A 78, 045802 (2008).


    Google Scholar
     

  • Albrecht, R., Bommer, A., Deutsch, C., Reichel, J. & Becher, C. Coupling of a single nitrogen–vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013).

    PubMed 

    Google Scholar
     

  • Kan, Y. et al. Metasurface-enabled generation of circularly polarized single photons. Adv. Mater. 32, 1907832 (2020).

    CAS 

    Google Scholar
     

  • Grange, T. et al. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 114, 193601 (2015).

    PubMed 

    Google Scholar
     

  • Bachelot, R. & Douillard, L. in Advances in Near-Field Optics (ed. Gordon, R.) 244 (Springer, 2023); https://doi.org/10.1007/978-3-031-34742-9_4

  • Arora, S. et al. Breakdown of spin-to-helicity locking at the nanoscale in topological photonic crystal edge states. Phys. Rev. Lett. 128, 203903 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Rotenberg, N. & Kuipers, L. Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014).


    Google Scholar
     

  • Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2012).

  • Olmon, R. L. et al. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010).

    PubMed 

    Google Scholar
     

  • Yanagimoto, S., Yamamoto, N., Sannomiya, T. & Akiba, K. Purcell effect of nitrogen–vacancy centers in nanodiamond coupled to propagating and localized surface plasmons revealed by photon-correlation cathodoluminescence. Phys. Rev. B 103, 205418 (2021).

    CAS 

    Google Scholar
     

  • Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Coenen, T., van de Groep, J. & Polman, A. Resonant modes of single silicon nanocavities excited by electron irradiation. ACS Nano 7, 1689–1698 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012).


    Google Scholar
     

  • Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    PubMed 

    Google Scholar
     

  • Londero, E., Thiering, G., Razinkovas, L., Gali, A. & Alkauskas, A. Vibrational modes of negatively charged silicon-vacancy centers in diamond from ab initio calculations. Phys. Rev. B 98, 035306 (2018).

    CAS 

    Google Scholar
     

  • Kianinia, M., Xu, Z.-Q., Toth, M. & Aharonovich, I. Quantum emitters in 2D materials: emitter engineering, photophysics, and integration in photonic nanostructures. Appl. Phys. Rev. 9, 011306 (2022).

    CAS 

    Google Scholar
     

  • Nelz, R. et al. Near-field energy transfer between a luminescent 2D material and color centers in diamond. Adv. Quant. Technol. 3, 1900088 (2020).

    CAS 

    Google Scholar
     

  • Gardiner, C. & Zoller, P. Quantum Noise (Springer, 2004).

  • Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2012).


    Google Scholar
     



  • Source link

    centres diamond emission modes nitrogenvacancy photonic Shaped topological waveguide
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    When hard work pays off

    October 14, 2025

    Tailoring nanoscale interfaces for perovskite–perovskite–silicon triple-junction solar cells

    October 13, 2025

    A record-breaking anisotropic van der Waals crystal? – Physics World

    October 12, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    When hard work pays off

    October 14, 2025

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Israel Hamas deal: The hostage, ceasefire, and peace agreement could have a grim lesson for future wars.

    October 14, 2025

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    When hard work pays off

    October 14, 2025

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.