Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Exposed Training Open the Door for Crypto-Mining in Fortune 500 Cloud Environments

    February 11, 2026

    9 Best Cheap Laptops (2026), Tested and Reviewed

    February 11, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Molecular crystal memristors | Nature Nanotechnology
    Nanotechnology

    Molecular crystal memristors | Nature Nanotechnology

    big tee tech hubBy big tee tech hubSeptember 19, 2025038 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Molecular crystal memristors | Nature Nanotechnology
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Parallel in-memory wireless computing. Nat. Electron. 6, 381–389 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Langenegger, J. et al. In-memory factorization of holographic perceptual representations. Nat. Nanotechnol. 18, 479–485 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, S. I., Kendall, J. D., Williams, R. S. & Kumar, S. Activity-difference training of deep neural networks using memristor crossbars. Nat. Electron. 6, 45–51 (2023).


    Google Scholar
     

  • Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article 

    Google Scholar
     

  • Zhu, K. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, T. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milano, G. et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21, 195–202 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, P. et al. Three-dimensional memristor circuits as complex neural networks. Nat. Electron. 3, 225–232 (2020).

    Article 

    Google Scholar
     

  • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Vertically integrated spiking cone photoreceptor arrays for color perception. Nat. Commun. 14, 3444 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications. Nat. Commun. 14, 3285 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H. et al. Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis. Nat. Commun. 14, 2276 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array. Nat. Nanotechnol. 16, 1079–1085 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 4, 348–356 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, K., Liu, L. & Zhai, T. Emerging two-dimensional inorganic molecular crystals: the concept and beyond. J. Phys. Chem. Lett. 13, 2173–2179 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Imperfection-enabled memristive switching in van der Waals materials. Nat. Electron. 6, 491–505 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. et al. Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing. Nat. Commun. 13, 4040 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, W. et al. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10, 3453 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, T. et al. Three-dimensional reconstruction of conductive filaments in HfOx-based memristor. Adv. Mater. 35, 2209925 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, B. et al. 90% yield production of polymer nano-memristor for in-memory computing. Nat. Commun. 12, 1984 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanza, M. et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano 15, 17214–17231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 28, 10623–10629 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, K. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, W. et al. Two-dimensional inorganic molecular crystals. Nat. Commun. 10, 4728 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu, H. et al. Van der Waals epitaxially grown molecular crystal dielectric Sb2O3 for 2D electronics. ACS Nano 18, 13098–13105 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Scalable integration of hybrid high-dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopperberg, N., Wouters, D. J., Waser, R., Menzel, S. & Wiefels, S. Accurate evaluation method for HRS retention of VCM ReRAM. APL Mater. 12, 031112 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Low-power memristive logic device enabled by controllable oxidation of 2D HfSe2 for in-memory computing. Adv. Sci. 8, 2005038 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao, R. et al. Improvement of device reliability by introducing a BEOL-compatible TiN barrier layer in CBRAM. IEEE Electron Device Lett. 38, 1371–1374 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tian, H. et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11, 12247–12256 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chekol, S. A., Menzel, S., Ahmad, R. W., Waser, R. & Hoffmann-Eifert, S. Effect of the threshold kinetics on the filament relaxation behavior of Ag-based diffusive memristors. Adv. Funct. Mater. 32, 2111242 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lei, P. et al. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses. Adv. Funct. Mater. 32, 2201276 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. In-memory computing using memristor arrays with ultrathin 2D PdSeOx/PdSe2 heterostructure. Adv. Mater. 34, 2201488 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. et al. A photoelectric spiking neuron for visual depth perception. Adv. Mater. 34, 2201895 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Y. et al. Performance-enhancing selector via symmetrical multilayer design. Adv. Funct. Mater. 29, 1808376 (2019).

    Article 

    Google Scholar
     

  • Lu, Y. et al. An electronic silicon-based memristor with a high switching uniformity. Nat. Electron. 2, 66–74 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Goswami, S. et al. Decision trees within a molecular memristor. Nature 597, 51–56 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13, 7432 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).

    Article 

    Google Scholar
     

  • Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, Y. et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5, 672–681 (2022).

    Article 

    Google Scholar
     

  • Hennen, T. et al. Current-limiting amplifier for high speed measurement of resistive switching data. Rev. Sci. Instrum. 92, 054701 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Chan, M. K. Y., Wolverton, C. & Greeley, J. P. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. J. Am. Chem. Soc. 134, 14362–14374 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606–609 (1998).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    crystal memristors molecular Nanotechnology Nature
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Super-moiré spin textures in twisted two-dimensional antiferromagnets

    February 10, 2026

    Issue 86

    February 10, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Exposed Training Open the Door for Crypto-Mining in Fortune 500 Cloud Environments

    February 11, 2026

    9 Best Cheap Laptops (2026), Tested and Reviewed

    February 11, 2026

    Laurence Fournier Beaudry and Guillaume Cizeron are on the brink of a controversial Olympic ice dance gold

    February 11, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Exposed Training Open the Door for Crypto-Mining in Fortune 500 Cloud Environments

    February 11, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.