Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Introducing checkpointless and elastic training on Amazon SageMaker HyperPod

    December 28, 2025

    Tesla Could Be Planning to Support Apple Car Keys

    December 28, 2025

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Polaron superlattices in n-doped single conjugated polymers
    Nanotechnology

    Polaron superlattices in n-doped single conjugated polymers

    big tee tech hubBy big tee tech hubSeptember 24, 2025018 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Polaron superlattices in n-doped single conjugated polymers
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Emin, D. Polarons (Cambridge Univ. Press, 2012).

  • Holstein, T. Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959).

    Article 
    CAS 

    Google Scholar
     

  • Holstein, T. Studies of polaron motion: part II. The “small” polaron. Ann. Phys. 8, 343–389 (1959).

    Article 
    CAS 

    Google Scholar
     

  • Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).

    Article 

    Google Scholar
     

  • Heeger, A. J. Semiconducting polymers: the third generation. Chem. Soc. Rev. 39, 2354–2371 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brédas, J. L. & Street, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985).

    Article 

    Google Scholar
     

  • The Physics of Organic Superconductors and Conductors (Springer, 2008).

  • Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Buizza, L. R. V. & Herz, L. M. Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices. Adv. Mater. 33, 2007057 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. & Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 19, 922–928 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Gao, S., Zhang, X., Xin, J. H. & Zhang, C. Probing the nature of charge carriers in one-dimensional conjugated polymers: a review of the theoretical models, experimental trends, and thermoelectric applications. J. Mater. Chem. C. 11, 12–47 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Salje, E. K. H. et al. (eds) Polarons and Bipolarons in High-Tc Superconductors and Related Materials (Cambridge Univ. Press, 1995).

  • Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Koepsell, J. et al. Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid. Science 374, 82–86 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koschorreck, M. et al. Attractive and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexandrov, A. S. Polarons in Advanced Materials (Springer, 2007).

  • Alexandrov, A. S. & Devreese, J. T. Advances in Polaron Physics (Springer, 2010).

  • Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mertelj, T., Kabanov, V. V. & Mihailovic, D. Charged particles on a two-dimensional lattice subject to anisotropic Jahn–Teller interactions. Phys. Rev. Lett. 94, 147003 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perfetti, L. et al. Spectroscopic indications of polaronic carriers in the quasi-one-dimensional conductor (TaSe4)2I. Phys. Rev. Lett. 87, 216404 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kruchinin, S. Multiband superconductors. Rev. Theor. Sci. 4, 165–178 (2016).

    Article 

    Google Scholar
     

  • Mahan, G. D. Many-Particle Physics (Springer, 2013).

  • Sio, W. H., Verdi, C., Poncé, S. & Giustino, F. Polarons from first principles, without supercells. Phys. Rev. Lett. 122, 246403 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sio, W. H., Verdi, C., Poncé, S. & Giustino, F. Ab initio theory of polarons: formalism and applications. Phys. Rev. B 99, 235139 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sio, W. H. & Giustino, F. Polarons in two-dimensional atomic crystals. Nat. Phys. 19, 629–636 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bhat, V., Callaway, C. P. & Risko, C. Computational approaches for organic semiconductors: from chemical and physical understanding to predicting new materials. Chem. Rev. 123, 7498–7547 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, M. et al. Displacement of polarons by vibrational modes in doped conjugated polymers. Phys. Rev. Mater. 1, 055604 (2017).

    Article 

    Google Scholar
     

  • Reticcioli, M. et al. Polaron-driven surface reconstructions. Phys. Rev. X 7, 031053 (2017).


    Google Scholar
     

  • Guzelturk, B. et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozin, E. S. et al. Crystallization of polarons through charge and spin ordering transitions in 1T-TaS2. Nat. Commun. 14, 7055 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bombile, J. H., Janik, M. J. & Milner, S. T. Polaron formation mechanisms in conjugated polymers. Phys. Chem. Chem. Phys. 20, 317–331 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 371, 818–822 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X. et al. Revealing intramolecular isotope effects with chemical-bond precision. J. Am. Chem. Soc. 145, 13839–13845 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cirera, B. et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nanotechnol. 15, 437–443 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Herrero, H. et al. Atomic scale control and visualization of topological quantum phase transition in π-conjugated polymers driven by their length. Adv. Mater. 33, e2104495 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Datar, A., Bar-Sadan, M. & Ramasubramaniam, A. Interactions between transition-metal surfaces and MoS2 monolayers: implications for hydrogen evolution and CO2 reduction reactions. J. Phys. Chem. C. 124, 20116–20124 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kivelson, S. & Heeger, A. J. First-order transition to a metallic state in polyacetylene: a strong-coupling polaronic metal. Phys. Rev. Lett. 55, 308–311 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stafström, S. et al. Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys. Rev. Lett. 59, 1464–1467 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Pásztor, Á. et al. Multiband charge density wave exposed in a transition metal dichalcogenide. Nat. Commun. 12, 6037 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Emin, D. Small polarons. Phys. Today 35, 34–40 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. et al. Chemical enhancement and quenching in single-molecule tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 62, e202218799 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Chemical identification and bond control of π-skeletons in a coupling reaction. J. Am. Chem. Soc. 143, 9461–9467 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, F. et al. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Methods 15, 194–200 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köppel, H., Yarkony, D. R. & Barentzen, H. The Jahn-Teller effect: Fundamentals and implications for physics and chemistry (Springer, 2009).

  • Pouget, J. P. et al. X ray observation of 2kF and 4kF scatterings in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 37, 437–440 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Schäfer, J. et al. Unusual spectral behavior of charge-density waves with imperfect nesting in a quasi-one-dimensional metal. Phys. Rev. Lett. 91, 066401 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90, 011101 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Yakovkin, I. N. Quantum confinement in free Cu(111), Ag(111), and Au(111) layers and apparent splitting of surface bands. Surf. Sci. 691, 121501 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Peng, J. et al. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9, 122 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Dong, Z.-C. & Aizpurua, J. Theoretical treatment of single-molecule scanning Raman picoscopy in strongly inhomogeneous near fields. J. Raman Spectrosc. 52, 296–309 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hu, W. et al. Identifying the structure of 4-chlorophenyl isocyanide adsorbed on Au(111) and Pt(111) surfaces by first-principles simulations of Raman spectra. Phys. Chem. Chem. Phys. 19, 32389–32397 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).

    Article 

    Google Scholar
     

  • Meena, R., Li, G. & Casula, M. Ground-state properties of the narrowest zigzag graphene nanoribbon from quantum Monte Carlo and comparison with density functional theory. J. Chem. Phys. 156, 084112 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tesch, R. & Kowalski, P. M. Hubbard U parameters for transition metals from first principles. Phys. Rev. B 105, 195153 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Polaron superlattices in n-doped single conjugated polymers. Zenodo (2025).



  • Source link

    conjugated Ndoped Polaron Polymers Single superlattices
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Probing the fundamental nature of the Higgs Boson – Physics World

    December 28, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Introducing checkpointless and elastic training on Amazon SageMaker HyperPod

    December 28, 2025

    Tesla Could Be Planning to Support Apple Car Keys

    December 28, 2025

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Introducing checkpointless and elastic training on Amazon SageMaker HyperPod

    December 28, 2025

    Tesla Could Be Planning to Support Apple Car Keys

    December 28, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.