Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Mozilla Says It’s Finally Done With Two-Faced Onerep – Krebs on Security

    November 23, 2025

    Trump administration might not fight state AI regulations after all

    November 23, 2025

    All-optical modulation with single photons using an electron avalanche

    November 23, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Unravelling electro-chemo-mechanical processes in graphite/silicon composites for designing nanoporous and microstructured battery electrodes
    Nanotechnology

    Unravelling electro-chemo-mechanical processes in graphite/silicon composites for designing nanoporous and microstructured battery electrodes

    big tee tech hubBy big tee tech hubOctober 27, 2025007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Unravelling electro-chemo-mechanical processes in graphite/silicon composites for designing nanoporous and microstructured battery electrodes
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Yao, Y., Liu, N., McDowell, M. T., Pasta, M. & Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5, 7927–7930 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rage, B., Delbegue, D., Louvain, N. & Lippens, P.-E. Engineering of silicon core–shell structures for Li-ion anodes. Chemistry 27, 16275–16290 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeschull, F. et al. Electrochemistry and morphology of graphite negative electrodes containing silicon as capacity-enhancing electrode additive. Electrochim. Acta 320, 134602 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Müller, J., Michalowski, P. & Kwade, A. Impact of silicon content and particle size in lithium-ion battery anodes on particulate properties and electrochemical performance. Batteries 9, 377 (2023).

    Article 

    Google Scholar
     

  • Han, H., Huang, Z. & Lee, W. Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9, 271–304 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Entwistle, J., Rennie, A. & Patwardhan, S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J. Mater. Chem. A 6, 18344–18356 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, T. et al. Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorg. Chem. Front. 5, 1463–1469 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Taiwo, O. O. et al. Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomography. Electrochim. Acta 253, 85–92 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. et al. The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries. J. Solid State Electrochem. 23, 3363–3372 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Unveiling the role of electrode-level heterogeneity alleviated in a silicon-graphite electrode under operando microscopy. Energy Storage Mater. 57, 269–276 (2023).

    Article 

    Google Scholar
     

  • Pietsch, P. et al. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes. Nat. Commun. 7, 12909 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L., Wu, J., Luo, J., Huang, J. & Dravid, V. P. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM. Sci. Rep. 4, 3863 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z.-L. et al. Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy. Energy Storage Mater. 3, 45–54 (2016).

    Article 

    Google Scholar
     

  • Qi, W. et al. Improving the rate capability of a SiOx/graphite anode by adding LiNO3. Prog. Nat. Sci. Mater. Int. 30, 321–327 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. et al. Revealing the role of poly(vinylidene fluoride) binder in Si/graphite composite anode for Li-ion batteries. ACS Omega 3, 11684–11690 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Q., Loveridge, M. J., Genieser, R., Lain, M. J. & Bhagat, R. Electrochemical evaluation and phase-related impedance studies on silicon–few layer graphene (FLG) composite electrode systems. Sci. Rep. 8, 1386 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, C. et al. In situ and ex situ TEM study of lithiation behaviours of porous silicon nanostructures. Sci. Rep. 6, 31334 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z.-L. et al. Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. J. Mater. Chem. A 4, 6098–6106 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Prado, A. Y. R., Rodrigues, M.-T. F., Trask, S. E., Shaw, L. & Abraham, D. P. Electrochemical dilatometry of si-bearing electrodes: dimensional changes and experiment design. J. Electrochem. Soc. 167, 160551 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Han, G. et al. A review on various optical fibre sensing methods for batteries. Renew. Sustain. Energy Rev. 150, 111514 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Buljac, A. et al. Digital volume correlation: review of progress and challenges. Exp. Mech. 58, 661–708 (2018).

    Article 

    Google Scholar
     

  • Bay, B. K., Smith, T. S., Fyhrie, D. P. & Saad, M. Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39, 217–226 (1999).

    Article 

    Google Scholar
     

  • Pietsch, P., Hess, M., Ludwig, W., Eller, J. & Wood, V. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries. Sci. Rep. 6, 27994 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valisammagari, A. et al. Study of microstructural evolution and strain analysis in SiOx/C negative electrodes using in-situ X-ray tomography and digital volume correlation. Batteries Supercaps 8, e202400416 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Wetjen, M. et al. Differentiating the degradation phenomena in silicon-graphite electrodes for lithium-ion batteries. J. Electrochem. Soc. 164, A2840 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chan, C. K., Ruffo, R., Hong, S. S., Huggins, R. A. & Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 189, 34–39 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dimov, N., Fukuda, K., Umeno, T., Kugino, S. & Yoshio, M. Characterization of carbon-coated silicon: structural evolution and possible limitations. J. Power Sources 114, 88–95 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W.-R. et al. Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, A1719 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J., Sun, A., Chen, X., Wang, C. & Manivannan, A. Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim. Acta 56, 3981–3987 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Zhu, J., Dai, H., Yu, C. & Wei, X. Impedance investigation of silicon/graphite anode during cycling. Batteries 9, 242 (2023).

    Article 

    Google Scholar
     

  • Harrington, D. A. & van den Driessche, P. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta 56, 8005–8013 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lai, W. & Haile, S. M. Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of Ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Clematis, D. et al. On the stabilization and extension of the distribution of relaxation times analysis. Electrochim. Acta 391, 138916 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bertei, A. et al. Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopy. Int. J. Hydrog. Energy 41, 22381–22393 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pan, K., Zou, F., Canova, M., Zhu, Y. & Kim, J.-H. Comprehensive electrochemical impedance spectroscopy study of Si-Based anodes using distribution of relaxation times analysis. J. Power Sources 479, 229083 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moyassari, E. et al. The role of silicon in silicon-graphite composite electrodes regarding specific capacity, cycle stability, and expansion. J. Electrochem. Soc. 169, 010504 (2022).

    Article 

    Google Scholar
     

  • Yoon, D.-H., Marinaro, M., Axmann, P. & Wohlfahrt-Mehrens, M. Study of the binder influence on expansion/contraction behavior of silicon alloy negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 167, 160537 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moon, J. et al. Interplay between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impact on degradation. Nat. Commun. 12, 2714 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finegan, D. P. et al. Spatially resolving lithiation in silicon–graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography. Nano Lett. 19, 3811–3820 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, K. P. C., Okasinski, J. S., Kalaga, K., Almer, J. D. & Abraham, D. P. Operando quantification of (de)lithiation behavior of silicon–graphite blended electrodes for lithium-ion batteries. Adv. Energy Mater. 9, 1803380 (2019).

    Article 

    Google Scholar
     

  • Cholewinski, A., Si, P., Uceda, M., Pope, M. & Zhao, B. Polymer binders: characterization and development toward aqueous electrode fabrication for sustainability. Polymers 13, 631 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peña Fernández, M., Barber, A. H., Blunn, G. W. & Tozzi, G. Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems. J. Microsc. 272, 213–228 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling. Nat. Commun. 14, 5127 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scurtu, R.-G. et al. From small batteries to big claims. Nat. Nanotechnol. 20, 970–976 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kornilov, A., Safonov, I. & Yakimchuk, I. A review of watershed implementations for segmentation of volumetric images. J. Imaging 8, 127 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasanpour, S., Hoorfar, M. & Phillion, A. Characterization of transport phenomena in porous transport layers using X-ray microtomography. J. Power Sources 353, 221–229 (2017).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Battery Composites Designing electrochemomechanical electrodes graphitesilicon microstructured nanoporous processes Unravelling
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    All-optical modulation with single photons using an electron avalanche

    November 23, 2025

    Quantum Magazine Issue 2

    November 22, 2025

    Flexible electrodes for the future of light detection – Physics World

    November 21, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Mozilla Says It’s Finally Done With Two-Faced Onerep – Krebs on Security

    November 23, 2025

    Trump administration might not fight state AI regulations after all

    November 23, 2025

    All-optical modulation with single photons using an electron avalanche

    November 23, 2025

    Starting today, Full Screen Experience for Windows 11 PCs is available for Xbox Insiders!

    November 23, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Mozilla Says It’s Finally Done With Two-Faced Onerep – Krebs on Security

    November 23, 2025

    Trump administration might not fight state AI regulations after all

    November 23, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.