Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Israel Hamas deal: The hostage, ceasefire, and peace agreement could have a grim lesson for future wars.

    October 14, 2025

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»A nanovaccine targeting cancer stem cells and bulk cancer cells for postoperative cancer immunotherapy
    Nanotechnology

    A nanovaccine targeting cancer stem cells and bulk cancer cells for postoperative cancer immunotherapy

    big tee tech hubBy big tee tech hubJune 16, 2025008 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    A nanovaccine targeting cancer stem cells and bulk cancer cells for postoperative cancer immunotherapy
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Hiller, J. G. et al. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 15, 205–218 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Reya, T. et al. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbato, L. et al. Cancer stem cells and targeting strategies. Cells 8, 926 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prager, B. C. et al. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24, 41–53 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, X. et al. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct. Target Ther. 9, 170 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilboa, E. The promise of cancer vaccines. Nat. Rev. Cancer 4, 401–411 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruiu, R. et al. Cancer stem cell immunology and immunotherapy: harnessing the immune system against cancer’s source. Prog. Mol. Biol. Transl. Sci. 164, 119–188 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning, N. et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 72, 1853–1864 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y. et al. Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res. 76, 4661–4672 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, O. et al. Melanoma vaccines: developments over the past 10 years. Expert Rev. Vaccines 10, 853–873 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quaglino, E., Conti, L. & Cavallo, F. Breast cancer stem cell antigens as targets for immunotherapy. Semin. Immunol. 47, 101386 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassani, N. A. et al. Cancer immunotherapy via targeting cancer stem cells using vaccine nanodiscs. Nano Lett. 20, 7783–7792 (2020).

    Article 

    Google Scholar
     

  • Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, I. A. et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71, 3991–4001 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells. Cell Res. 28, 336–358 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 81, 5919–5934 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lizee, G. et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol. 4, 1065–1073 (2003).

  • Samie, M. & Cresswell, P. The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat. Immunol. 16, 729–736 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, L. H. Cationic lipids-mediated dual-targeting of both dendritic cells and tumor cells for potent cancer immunotherapy. Adv. Funct. Mater. 33, 2306752 (2023).

    Article 

    Google Scholar
     

  • Hu, M. et al. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer immunochemotherapy. ACS Nano 15, 3123–3138 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabrilovich, D. I., Ostrand, R. S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Z., Todd, L. & Huang, L. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. Nat. Commun. 14, 510 (2023).

    Article 

    Google Scholar
     

  • Lakins, M. A., Ghorani, E. & Munir, H. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat. Commun. 9, 948 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, J. et al. T‐cell‐derived nanovesicles for cancer immunotherapy. Adv. Mater. 33, 2101110 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug. Discov. 14, 781–803 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Sci. Transl. Med. 13, 601 (2021).

    Article 

    Google Scholar
     

  • von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article 

    Google Scholar
     

  • Clatworthy, M. R. et al. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes. Nat. Med. 20, 1458–1463 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, W. et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat. Commun. 14, 265 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, Q. et al. m6A reader YTHDF1-targeting engineered small extracellular vesicles for gastric cancer therapy via epigenetic and immune regulation. Adv. Mater. 35, e2204910 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, C. et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. 16, 1394–1402 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zehner, M. et al. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8+ T cells. Immunity 42, 850–863 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McClements, L. et al. Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway. Clin. Cancer Res. 19, 3881–3893 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, S. et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat. Nanotechnol. 16, 104–113 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dieter, S. M. et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9, 357–365 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. C. et al. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat. Commun. 7, 11702 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy. Nat. Commun. 14, 6748 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai, Y. et al. T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy. Nat. Nanotechnol. 16, 1271–1280 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnan, N. et al. A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nat. Nanotechnol. 19, 345–353 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsadek, B. & Kratz, F. Impact of albumin on drug delivery-new applications on the horizon. J. Control. Release 157, 4–28 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Sci. Transl. Med. 14, eabl3649 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Sci. Immunol. 6, eabf4432 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giampazolias, E. et al. Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell 184, 4016–4031. e22 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canton, J. et al. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat. Immunol. 22, 140–153 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roney, K. Bone marrow-derived dendritic cells. Methods Mol. Biol. 1960, 57–62 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assouvie, A., Daley-Bauer, L. P. & Rousselet, G. Growing murine bone marrow-derived macrophages. Methods Mol. Biol. 1784, 29–33 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hui, Y. et al. Selection of DNA aptamers against DC-SIGN protein. Mol. Cell. Biochem. 306, 71–77 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, M. & Shapiro, L. H. In vitro Ag cross-presentation and in vivo Ag cross-presentation by dendritic cells in the mouse. Bio-Protocol 2, e305 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    bulk cancer cells immunotherapy nanovaccine postoperative stem Targeting
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Tailoring nanoscale interfaces for perovskite–perovskite–silicon triple-junction solar cells

    October 13, 2025

    A record-breaking anisotropic van der Waals crystal? – Physics World

    October 12, 2025

    Eco-Friendly Nanoparticles for Water Purification Solutions

    October 12, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Israel Hamas deal: The hostage, ceasefire, and peace agreement could have a grim lesson for future wars.

    October 14, 2025

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025

    ios – Differences in builds between Xcode 16.4 and Xcode 26

    October 13, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Israel Hamas deal: The hostage, ceasefire, and peace agreement could have a grim lesson for future wars.

    October 14, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.