Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Architecting Security for Agentic Capabilities in Chrome

    December 27, 2025

    ServiceNow has spent $12B+ on acquisitions and investments in 2025 amid concerns about revenue growth, projected to fall below 20% in 2026 without acquisitions (Brody Ford/Bloomberg)

    December 27, 2025

    Reader picks: The most popular Python stories of 2025

    December 27, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»a new look at magnetic excitations – Physics World
    Nanotechnology

    a new look at magnetic excitations – Physics World

    big tee tech hubBy big tee tech hubDecember 25, 20250104 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    a new look at magnetic excitations – Physics World
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


    New research reveals how quantum effects in double-exchange ferromagnets drive unexpected magnetic behaviour

    Iron-based material

    Iron-based material (Courtesy: iStock/Assistantua)

    For almost a century, physicists have tried to understand why and how materials become magnetic. From refrigerator magnets to magnetic memories, the microscopic origins of magnetism remain a surprisingly subtle puzzle — especially in materials where electrons behave both like individual particles and like a collective sea.

    In most transition-metal compounds, magnetism comes from the dance between localized and mobile electrons. Some electrons stay near their home atoms and form tiny magnetic moments (spins), while others roam freely through the crystal. The interaction between these two types of electrons produces “double-exchange” ferromagnetism — the mechanism that gives rise to the rich magnetic behaviour of materials such as manganites, famous for their colossal magnetoresistance (a dramatic change in electrical resistance under a magnetic field). Traditionally, scientists modelled this behaviour by treating the localized spins as classical arrows — big and well-defined, like compass needles. This approximation works well enough for explaining basic ferromagnetism, but experiments over the last few decades have revealed strange features that defy the classical picture. In particular, neutron scattering studies of manganites showed that the collective spin excitations, called magnons, do not behave as expected. Their energy spectrum “softens” (the waves slow down) and their sharp signals blur into fuzzy continua — a sign that the magnons are losing their coherence. Until now, these effects were usually blamed on vibrations of the atomic lattice (phonons) or on complex interactions between charge, spin, and orbital motion.

    2025-november-researchgroup-Herbrych
    Left to right: Adriana Moreo and Elbio Dagotto from University of Tennessee (USA), Takami Tohyama from Tokyo University of Science (Japan), and Marcin Mierzejewski and Jacek Herbrych from Wrocław University of Technology (Courtesy: Herbrych/Wrocław University of Science and Technology)

    A new theoretical study challenges that assumption. By going fully quantum mechanical — treating every localized spin not as a classical arrow but as a true quantum object that can fluctuate, entangle, and superpose — the researchers have reproduced these puzzling experimental observations without invoking phonons at all. Using two powerful model systems (a quantum version of the Kondo lattice and a two-orbital Hubbard model), the team simulated how electrons and spins interact when no semiclassical approximations are allowed. The results reveal a subtle quantum landscape. Instead of a single type of electron excitation, the system hosts two. One behaves like a spinless fermion — a charge carrier stripped of its magnetic identity. The other forms a broad, “incoherent” band of excitations arising from local quantum triplets. These incoherent states sit close to the Fermi level and act as a noisy background — a Stoner-like continuum — that the magnons can scatter off. The result: magnons lose their coherence and energy in just the way experiments observe.

    Perhaps most surprisingly, this mechanism doesn’t rely on the crystal lattice at all. It’s an intrinsic consequence of the quantum nature of the spins themselves. Larger localized spins, such as those in classical manganites, tend to suppress the effect — explaining why decoherence is weaker in some materials than others. Consequently, the implications reach beyond manganites. Similar quantum interplay may occur in iron-based superconductors, ruthenates, and heavy-fermion systems where magnetism and superconductivity coexist. Even in materials without permanent local moments, strong electronic correlations can generate the same kind of quantum magnetism.

    In short, this work uncovers a purely electronic route to complex magnetic dynamics — showing that the quantum personality of the electron alone can mimic effects once thought to require lattice distortions. By uniting electronic structure and spin excitations under a single, fully quantum description, it moves us one step closer to understanding how magnetism truly works in the most intricate materials.

    Do you want to learn more about this topic?

    Nanoscale electrodynamics of strongly correlated quantum materials by Mengkun Liu, Aaron J Sternbach and D N Basov (2017)



    Source link

    excitations Magnetic Physics World
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025

    Machine perception liquid biopsy identifies brain tumours via systemic immune and tumour microenvironment signature

    December 26, 2025

    Laser-Written Nanostructures for Scalable Thermal Management

    December 24, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Architecting Security for Agentic Capabilities in Chrome

    December 27, 2025

    ServiceNow has spent $12B+ on acquisitions and investments in 2025 amid concerns about revenue growth, projected to fall below 20% in 2026 without acquisitions (Brody Ford/Bloomberg)

    December 27, 2025

    Reader picks: The most popular Python stories of 2025

    December 27, 2025

    Trump’s war on offshore wind faces another lawsuit

    December 27, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Architecting Security for Agentic Capabilities in Chrome

    December 27, 2025

    ServiceNow has spent $12B+ on acquisitions and investments in 2025 amid concerns about revenue growth, projected to fall below 20% in 2026 without acquisitions (Brody Ford/Bloomberg)

    December 27, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.