Stepanov, B. & Gribkovskii, V. Theory of Luminescence (Iliffe, 1968).
Gribkovskii, V. in Luminescence of Solids 1–43 (Springer, 1998).
Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).
Yang, H. et al. Orchestrating spontaneous emission with metasurfaces: recent advances in engineering thermal, luminescent, and quantum emissions. Adv. Opt. Mater. 13, 2402755 (2025).
Muniain, U., Esteban, R., Aizpurua, J. & Greffet, J.-J. Unified treatment of light emission by inelastic tunneling: interaction of electrons and photons beyond the gap. Phys. Rev. X 14, 021017 (2024). This paper presents the theory of plasmon emission from inelastic tunnelling. The equivalence between the radiation from fluctuating currents and the Fermi golden rule approach is derived explicitly.
Sivan, Y. & Dubi, Y. Theory of ‘hot’ photoluminescence from drude metals. ACS Nano 15, 8724–8732 (2021). The theory of PL from metals is discussed, including non-equilibrium electrons and holes.
Baffou, G. Anti-Stokes thermometry in nanoplasmonics. ACS Nano 15, 5785–5792 (2021).
Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science 375, eabm9293 (2022). A theory of scintillation is proposed using equation (8) and the Green tensor formalism.
Bowman, A. R. et al. Quantum-mechanical effects in photoluminescence from thin crystalline gold films. Light Sci. Appl. 13, 91 (2024).
Loirette-Pelous, A. & Greffet, J.-J. Theory of photoluminescence by metallic structures. ACS Nano 18, 31823 (2024). A theory of PL from metallic nanoparticles is presented, including a derivation of equation (10).
Karnieli, A. et al. Modeling quantum optical phenomena using transition currents. Appl. Phys. Rev. 11, 031305 (2024). The authors discuss light emission from transition currents and applications to quantum effects.
Bailly, E. et al. 2D silver-nanoplatelets metasurface for bright directional photoluminescence, designed with the local Kirchhoff’s law. ACS Nano 18, 4903–4910 (2024).
Kirchhoff, G. On the relation between the radiating and absorbing powers of different bodies for light and heat. Lond. Edin. Dublin Phil. Mag. J. Sci. 20, 1–21 (1860). This paper presents the original derivation of Kirchhoff’s law.
Rytov, S. M., Kravtsov, Y. A. & Tatarskii, V. I. Principles of Statistical Radiophysics Vol. 3 (Springer, 1989). This book provides a thorough introduction to fluctuational electrodynamics.
Landau, L., Lifshitz, E. M. & Pitaevskii, L. Statistical Physics Part I (Pergamon, 1980).
Li, W. & Fan, S. Nanophotonic control of thermal radiation for energy applications. Opt. Express 26, 15995 (2018).
Baranov, D. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).
Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).
Picardi, M., Nimje, K. & Papadakis, G. Dynamic modulation of thermal emission—a tutorial. J. Appl. Phys. 133, 111101 (2023).
Vazquez-Lozano, J. E. & Liberal, I. Review on the scientific and technological breakthroughs in thermal emission engineering. ACS Appl. Opt. Mater. 2, 898 (2024).
Chu, Q. et al. Controlling thermal emission with metasurfaces and its applications. Nanophotonics 13, 1279–1301 (2024).
Lamoreaux, S. K. The Casimir force: background, experiments, and applications. Rep. Progr. Phys. 68, 201 (2004).
Henkel, C., Joulain, K., Mulet, J.-P. & Greffet, J.-J. Radiative forces on small particles in thermal near fields. J. Opt. A4, S109 (2002).
Henkel, C., Joulain, K., Mulet, J.-P. & Greffet, J.-J. Coupled surface polaritons and the Casimir force. Phys. Rev. A 69, 023803 (2004).
Joulain, K., Mulet, J.-P., Marquier, F., Carminati, R. & Greffet, J.-J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2004).
Henry, C. & Kazarinov, F. Quantum noise in photonics. Rev. Mod. Phys. 68, 801 (1996). This paper offers a thorough quantum treatment of light emission from semiconductors, including a detailed derivation of the fluctuation–dissipation relation for pumped semiconductors.
Greffet, J.-J., Bouchon, P., Brucoli, G. & Marquier, F. Light emission by nonequilibrium bodies: local Kirchhoff law. Phys. Rev. X 8, 021008 (2018). The authors provide a derivation of a local Kirchhoff law that is applicable to bodies with arbitrary shapes and inhomogeneous temperatures and chemical potentials.
Benisty, H., Greffet, J.-J. & Lalanne, P. Introduction to Nanophotonics (Oxford Univ. Press, 2022).
Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).
Zhou, M. et al. Self-focused thermal emission and holography realized by mesoscopic thermal emitters. ACS Photon. 8, 497–504 (2021).
Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).
Overvig, A., Yu, N. & Alù, A. Chiral quasi-bound states in the continuum. Phys. Rev. Lett. 126, 073001 (2021).
Celanovic, I., Perreault, D. & Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005).
Fan, Z., Hwang, T. & Lin, S. A. Directional thermal emission and display using pixelated non-imaging micro-optics. Nat. Commun. 15, 4544 (2024).
Puscasu, I. & Schaich, W. L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl. Phys. Lett. 92, 233102 (2008).
Liu, X. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011).
Bouchon, P., Koechlin, C., Pardo, F., Haïdar, R. & Pelouard, J.-L. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt. Lett. 37, 1038–1040 (2012).
Blanchard, C. et al. Metallo-dielectric metasurfaces for thermal emission with controlled spectral bandwidth and angular aperture. Opt. Mat. Express 12, 1–12 (2022).
Cui, Y. et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012).
Cattoni, A. et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett. 11, 3557–3563 (2011).
Dahan, N. et al. Enhanced coherency of thermal emission: beyond the limitation imposed by delocalized surface waves. Phys. Rev. B 76, 045427 (2007).
Lu, G. et al. Engineering the spectral and spatial dispersion of thermal emission via polariton-phonon strong coupling. Nano Lett. 21, 1831–1838 (2021).
Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photon. 3, 658–661 (2009).
Wojszvzyk, L. et al. An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated beyond 10 MHz. Nat. Commun. 12, 1492 (2021).
Wadsworth, S. L., Clem, P. G., Branson, E. D. & Boreman, G. D. Broadband circularly-polarized infrared emission from multilayer metamaterials. Opt. Mater. Express 1, 466–479 (2011).
Dahan, N., Gorodetski, Y., Frischwasser, K., Kleiner, V. & Hasman, E. Geometric doppler effect: spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402 (2010).
Nguyen, A. et al. Large circular dichroism in the emission from an incandescent metasurface. Optica 10, 232–238 (2023).
Wang, X. et al. Observation of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces. Sci. Adv. 9, eade4203 (2023).
Miyazaki, H. T. et al. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing. Sci. Technol. Adv. Mater. 16, 035005 (2015).
Inoue, T., Zoysa, M. D., Asano, T. & Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 13, 928–931 (2014).
Liu, X. & Madilla, W. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430 (2017).
Shi, C., Mahlmeister, N. H., Luxmoore, I. J. & Nash, G. R. Metamaterial-based graphene thermal emitter. Nano Res. 11, 3567–3573 (2018).
Kang, D., Inoue, T., Asano, T. & Noda, S. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photon. 6, 1565–1571 (2017).
Brar, V. W. et al. Electronic modulation of infrared radiation in graphene plasmonic resonators. Nat. Commun. 6, 7032 (2015).
Papadakis, G. T., Zhao, B., Buddhiraju, S. & Fan, S. Gate-tunable near-field heat transfer. ACS Photon. 6, 709–719 (2019).
Thomas, N. H., Sherrott, M. C., Broulliet, J., Atwater, H. A. & Minnich, A. J. Electronic modulation of near-field radiative transfer in graphene field effect heterostructures. Nano Lett. 19, 3898–3904 (2019).
Cao, T., Zhang, L., Simpson, R. E. & Cryan, M. J. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J. Opt. Soc. Am. B 30, 1580–1585 (2013).
Qu, Y., Li, Q., Cai, L. & Qiu, M. Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5. Opt. Mater. Express 8, 2312–2320 (2018).
Fan, D., Li, Q. & Dai, P. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films. Acta Astronaut. 121, 144–152 (2016).
Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).
Polder, D. & van Hove, M. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303 (1971).
Würfel, P. The chemical potential of radiation. J. Phys. C 15, 3967 (1982). This paper introduces the concept of the photon chemical potential and the generalized Kirchhoff’s law for pumped semiconductors.
Feuerbacher, B. & Würfel, P. Verification of a generalised Planck law by investigation of the emission from GaAs luminescent diodes. J. Phys. Condens. Matter 2, 3803 (1990).
Green, M., Zhao, J., Wang, A., Reece, P. & Gal, M. Efficient silicon light-emitting diodes. Nature 412, 805–808 (2001).
Le-Van, Q., Le Roux, X., Aassime, A. & Degiron, A. Electrically driven optical metamaterials. Nat. Commun. 7, 12017 (2016).
Monin, H. et al. Controlling light emission by a thermalized ensemble of colloidal quantum dots with a metasurface. Opt. Express 31, 4851–4861 (2023).
Coldren, L. A., Corzine, S. W. & Mashanovitch, M. L. Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Progr. Phys. 78, 013901 (2014).
George, J. et al. Ultra-strong coupling of molecular materials: spectroscopy and dynamics. Faraday Discuss. 178, 281 (2015).
Aberra-Guebrou, S. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmon. Phys. Rev. Lett. 108, 066401 (2012).
Bailly, E., Hugonin, J.-P., Vest, B. & Greffet, J.-J. Spatial coherence of light emitted by thermalized ensembles of emitters coupled to surface waves. Phys. Rev. Res. 3, L032040 (2021).
Perez de la Vega, C. R. et al. Plasmon-mediated energy transfer between two systems out of equilibrium. ACS Photon. 10, 1169–1176 (2023).
Garcia de Abajo, F. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Chen, H.-L. et al. Quantitative assessment of carrier density by cathodoluminescence. I. GaAs thin films and modeling. Phys. Rev. Appl. 15, 024006 (2021).
Loirette-Pelous, A. & Greffet, J.-J. On the applicability of Kirchhoff’s law to the lasing regime. Optica 11, 1621 (2024).
Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).
Laks, B. & Mills, D. L. Photon emission from slightly roughened tunnel junctions. Phys. Rev. B 20, 4962–4980 (1979).
Laks, B. & Mills, D. L. Light emission from tunnel junctions: the role of the fast surface polariton. Phys. Rev. B 22, 5723–5729 (1980).
Hone, D., Mühlschlegel, B. & Scalapino, D. J. Theory of light emission from small particle tunnel junctions. Appl. Phys. Lett. 33, 203–204 (1978).
Kirtley, J., Theis, T. N. & Tsang, J. C. Light emission from tunnel junctions on gratings. Phys. Rev. B 24, 5650–5663 (1981).
Kirtley, J. R., Theis, T. N., Tsang, J. C. & DiMaria, D. J. Hot-electron picture of light emission from tunnel junctions. Phys. Rev. B 27, 4601–4611 (1983).
Persson, B. N. J. & Baratoff, A. Theory of photon emission in electron tunneling to metallic particles. Phys. Rev. Lett. 68, 3224–3227 (1992).
Mooradian, A. Photoluminescence of metals. Phys. Rev. Lett. 22, 185 (1969).
Boyd, G., Yu, Z. & Shen, Y. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923 (1986).
Apell, P., Monreal, R. & Lundqvist, S. Photoluminescence of noble metals. Phys. Scripta 38, 174 (1988).
Wilcoxon, J., Martin, J., Parsapour, F., Wiedenman, B. & Kelley, D. Photoluminescence from nanosize gold clusters. J. Chem. Phys. 108, 9137–9143 (1998).
Mohamed, M. B., Volkov, V., Link, S. & El-Sayed, M. A. The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 317, 517–523 (2000).
Huang, T. & Murray, R. W. Visible luminescence of water-soluble monolayer-protected gold clusters. J. Phys. Chem. B 105, 12498–12502 (2001).
Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).
Wu, X. et al. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 4, 113–120 (2010).
Tcherniak, A. et al. One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J. Phys. Chem. C 115, 15938–15949 (2011).
Hu, H., Duan, H., Yang, J. K. & Shen, Z. X. Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano 6, 10147–10155 (2012).
Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A. & Orrit, M. Luminescence quantum yield of single gold nanorods. Nano Lett. 12, 4385–4391 (2012).
He, Y. et al. Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods. Nanoscale 7, 577–582 (2015).
Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015).
Xie, X. & Cahill, D. G. Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering. Appl. Phys. Lett. 109, 183104 (2016).
Lin, K.-Q. et al. Intraband hot-electron photoluminescence from single silver nanorods. ACS Photon. 3, 1248–1255 (2016).
Carattino, A., Caldarola, M. & Orrit, M. Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018).
Barella, M. et al. In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-Stokes thermometry. ACS Nano 15, 2458–2467 (2020).
Cai, Y.-Y., Tauzin, L. J., Ostovar, B., Lee, S. & Link, S. Light emission from plasmonic nanostructures. J. Chem. Phys. 155, 060901 (2021).
Shahbazyan, T. V. Purcell factor for plasmon-enhanced metal photoluminescence. J. Phys. Chem. C 127, 5898–5903 (2023).
Dubi, Y. & Sivan, Y. ‘Hot’ electrons in metallic nanostructures-non-thermal carriers or heating? Light Sci. Appl. 8, 89 (2019).
Min, S. et al. End-to-end design of multicolor scintillators for enhanced energy resolution in X-ray imaging. Light Sci. Appl. 14, 158 (2025).
Kurman, Y. et al. Purcell-enhanced X-ray scintillation. Sci. Adv. 10, eadq6325 (2024).
Martin-Monier, L. et al. Large-scale self-assembled nanophotonic scintillators for X-ray imaging. Nat. Commun. 16, 5750 (2025).
Shultzman, A., Segal, O., Kurman, Y., Roques-Carmes, C. & Kaminer, I. Enhanced imaging using inverse design of nanophotonic scintillators. Adv. Opt. Mater. 11, 220318 (2023).
Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).
Dung, D. et al. Variable potentials for thermalized light and coupled condensates. Nat. Photon. 11, 565–569 (2017).
Loirette-Pelous, A. & Greffet, J.-J. Photon Bose–Einstein condensation and lasing in semiconductor cavities. Laser Photon. Rev. 17, 2300366 (2023).
Barland, S., Azam, P., Lippi, G., Nyman, R. & Kaiser, R. Photon thermalisation and a condensation phase transition in an electrically pumped semiconductor microresonator. Opt. Express 29, 8368 (2021).
Schofield, R. et al. Bose–Einstein condensation of light in a semiconductor quantum well microcavity. Nat. Photon. 18, 1083–1089 (2024).
Pieczarka, M. et al. Bose–Einstein condensation of photons in a vertical-cavity surface-emitting laser. Nat. Photon. 18, 1090–1096 (2024).
Shayegan, K. J., Zhao, B., Kim, Y., Fan, S. & Atwater, H. A. Nonreciprocal infrared absorption via resonant magneto-optical coupling to inas. Sci. Adv. 8, eabm4308 (2022).
Shayegan, K. J., Biswas, S., Zhao, B., Fan, S. & Atwater, H. A. Direct observation of the violation of Kirchhoff’s law of thermal radiation. Nat. Photon. 17, 891–896 (2023).
Long, O. et al. Nonreciprocal scintillation using one-dimensional magneto-optical photonic crystals. Phys. Rev. Appl. 22, 054062 (2024).
Lagrée, M. et al. Effective-density-matrix approach for intersubband plasmons coupled to a cavity field: electrical extraction and injection of intersubband polaritons. Phys. Rev. Appl. 21, 034002 (2024).
Yang, W. et al. A graphene Zener-Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018).
Karabchevsky, A., Mosayyebi, A. & Kavokin, A. Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles. Light Sci. Appl. 5, e16164 (2016).
Vazquez-Lozano, J. E. & Liberal, I. Incandescent temporal metamaterials. Nat. Commun. 18, 4606 (2023).
Cohen-Tannoudji, C., Dupont-Roc, J., Grinberg, G. & Thickstun, P. Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1992).
Muniz, Y., da Rosa, F. S. S., Farina, C., Szilard, D. & Kort-Kamp, W. J. M. Quantum two-photon emission in a photonic cavity. Phys. Rev. A 100, 023818 (2019).
Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljačić, M. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).
Leon, C. C. et al. Photon superbunching from a generic tunnel junction. Sci. Adv. 5, eaav4986 (2019).
Sivan, Y. et al. Crossover from nonthermal to thermal photoluminescence from metals excited by ultrashort light pulses. ACS Nano 17, 11439–11453 (2023).
Cai, Y.-Y. et al. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano 12, 976–985 (2018).
Cai, Y.-Y. et al. Anti-Stokes emission from hot carriers in gold nanorods. Nano Lett. 19, 1067–1073 (2019).
Giuliani, L. G. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).
Vogel, W. & Welsch, D. Quantum Optics (Wiley, 2006).
Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).
Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, 2011).
Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 1990).
Siegman, A. Lasers (University Science Books, 1986).
