Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
Wilkins, M. H. F., Stokes, A. R. & Wilson, H. R. Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature 171, 738–740 (1953).
Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).
Song, Y. & Hyeon, C. Thermodynamic uncertainty relation to assess biological processes. J. Chem. Phys. 154, 130901 (2021).
Song, Y. & Hyeon, C. Thermodynamic cost, speed, fluctuations, and error reduction of biological copy machines. J. Phys. Chem. Lett. 11, 3136–3143 (2020).
Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).
Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).
Goodman, M. F. Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc. Natl Acad. Sci. USA 94, 10493–10495 (1997).
Sartori, P. & Pigolotti, S. Thermodynamics of error correction. Phys. Rev. X 5, 041039 (2015).
Mallory, J. D., Kolomeisky, A. B. & Igoshin, O. A. Trade-offs between error, speed, noise, and energy dissipation in biological processes with proofreading. J. Phys. Chem. B 123, 4718–4725 (2019).
Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).
Borsley, S., Gallagher, J. M., Leigh, D. A. & Roberts, B. M. W. Ratcheting synthesis. Nat. Rev. Chem. 8, 8–29 (2024).
Sangchai, T., Al Shehimy, S., Penocchio, E. & Ragazzon, G. Artificial molecular ratchets: tools enabling endergonic processes. Angew. Chem. Int. Ed. 62, e202309501 (2023).
Borsley, S., Leigh, D. A. & Roberts, B. M. W. Molecular ratchets and kinetic asymmetry: giving chemistry direction. Angew. Chem. Int. Ed. 63, e202400495 (2024).
Borsley, S., Leigh, D. A. & Roberts, B. M. W. Chemical fuels for molecular machinery. Nat. Chem. 14, 728–738 (2022).
Amano, S. et al. Using catalysis to drive chemistry away from equilibrium: relating kinetic asymmetry, power strokes, and the Curtin–Hammett principle in Brownian ratchets. J. Am. Chem. Soc. 144, 20153–20164 (2022).
Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. 63, e202306569 (2024).
Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).
Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).
Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).
Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).
Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).
Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).
Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).
Olivieri, E., Gallagher, J. M., Betts, A., Mrad, T. W. & Leigh, D. A. Endergonic synthesis driven by chemical fuelling. Nat. Synth. 3, 707–714 (2024).
Al Shehimy, S. et al. Progressive endergonic synthesis of Diels–Alder adducts driven by chemical energy. Angew. Chem. Int. Ed. 63, e202411554 (2024).
Marchetti, T., Frezzato, D., Gabrielli, L. & Prins, L. J. ATP drives the formation of a catalytic hydrazone through an energy ratchet mechanism. Angew. Chem. Int. Ed. 62, e202307530 (2023).
Ota, E., Wang, H., Frye, N. L. & Knowles, R. R. A redox strategy for light-driven, out-of-equilibrium isomerizations and application to catalytic C–C bond cleavage reactions. J. Am. Chem. Soc. 141, 1457–1462 (2019).
Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).
Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).
Walther, A. & Giuseppone, N. Out-of-Equilibrium (Supra)Molecular Systems and Materials (Wiley-VCH, 2021).
Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).
Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974).
Arias-Gonzalez, J. R. Entropy involved in fidelity of DNA deplication. PLoS ONE 7, e42272 (2012).
Wochner, A., Attwater, J., Coulson, A. & Holliger, P. Ribozyme-catalyzed transcription of an active ribozyme. Science 332, 209–212 (2011).
Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 5, 1011–1018 (2013).
Mukherjee, R., Sengar, A., Cabello-García, J. & Ouldridge, T. E. Kinetic proofreading can enhance specificity in a nonenzymatic DNA strand displacement network. J. Am. Chem. Soc. 146, 18916–18926 (2024).
Cabello-Garcia, J., Mukherjee, R., Bae, W., Stan, G.-B. V. & Ouldridge, T. E. Information propagation through enzyme-free catalytic templating of DNA dimerization with weak product inhibition. Nat. Chem. (2025).
Haley, N. E. C. et al. Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nat. Commun. 11, 2562 (2020).
Amano, S. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. 14, 530–537 (2022).
Del Grosso, E., Franco, E., Prins, L. J. & Ricci, F. Dissipative DNA nanotechnology. Nat. Chem. 14, 600–613 (2022).
Penocchio, E., Bachir, A., Credi, A., Astumian, R. D. & Ragazzon, G. Analysis of kinetic asymmetry in a multi-cycle reaction network establishes the principles for autonomous compartmentalized molecular ratchets. Chem 10, 3644–3655 (2024).
Schormann, N., Ricciardi, R. & Chattopadhyay, D. Uracil‐DNA glycosylases—structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci. 23, 1667–1685 (2014).
Hall-Thomsen, H. et al. Directing uphill strand displacement with an engineered superhelicase. ACS Synth. Biol. 12, 3424–3432 (2023).
Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).
Mayer, T., Oesinghaus, L. & Simmel, F. C. Toehold-mediated strand displacement in random sequence pools. J. Am. Chem. Soc. 145, 634–644 (2023).
Del Grosso, E. et al. Dissipative control over the toehold‐mediated DNA strand displacement reaction. Angew. Chem. Int. Ed. 61, e202201929 (2022).
Binks, L. et al. The role of kinetic asymmetry and power strokes in an information ratchet. Chem 9, 2902–2917 (2023).
Aprahamian, I. & Goldup, S. M. Non-equilibrium steady states in catalysis, molecular motors, and supramolecular materials: why networks and language matter. J. Am. Chem. Soc. 145, 14169–14183 (2023).
Marchetti, T., Roberts, B. M. W., Frezzato, D. & Prins, L. J. A minimalistic covalent bond‐forming chemical reaction cycle that consumes adenosine diphosphate. Angew. Chem. Int. Ed. 63, e202402965 (2024).
Liu, H.-K. et al. Structural influence of the chemical fueling system on a catalysis-driven rotary molecular motor. J. Am. Chem. Soc. 147, 8785–8795 (2025).
Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency in dissipative chemistry. Nat. Commun. 10, 3865 (2019).
Kar, H., Goldin, L., Frezzato, D. & Prins, L. J. Local self‐assembly of dissipative structures sustained by substrate diffusion. Angew. Chem. Int. Ed. 63, e202404583 (2024).
Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).
Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
Hartich, D., Barato, A. C. & Seifert, U. Nonequilibrium sensing and its analogy to kinetic proofreading. New J. Phys. 17, 055026 (2015).
Ivanov, N. M., Baltussen, M. G., Fernández Regueiro, C. L., Derks, M. T. G. M. & Huck, W. T. S. Computing arithmetic functions using immobilised enzymatic reaction networks. Angew. Chem. Int. Ed. 62, e202215759 (2023).
Ehrich, J. & Sivak, D. A. Energy and information flows in autonomous systems. Front. Phys. 11, 1108357 (2023).
Kriebisch, C. M. E. et al. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat. Chem. 16, 1240–1249 (2024).
Stasi, M. et al. Regulating DNA-hybridization using a chemically fueled reaction cycle. J. Am. Chem. Soc. 144, 21939–21947 (2022).
Cover, T. M. & Thomas, J. A. Elements of Information Theory Vol. 2012 (John Wiley & Sons, 2012).