Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025

    ios – Differences in builds between Xcode 16.4 and Xcode 26

    October 13, 2025

    How to run RAG projects for better data analytics results

    October 13, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»An information ratchet improves selectivity in molecular recognition under non-equilibrium conditions
    Nanotechnology

    An information ratchet improves selectivity in molecular recognition under non-equilibrium conditions

    big tee tech hubBy big tee tech hubAugust 3, 2025008 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    An information ratchet improves selectivity in molecular recognition under non-equilibrium conditions
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilkins, M. H. F., Stokes, A. R. & Wilson, H. R. Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature 171, 738–740 (1953).

    CAS 
    PubMed 

    Google Scholar
     

  • Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).

    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. & Hyeon, C. Thermodynamic uncertainty relation to assess biological processes. J. Chem. Phys. 154, 130901 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. & Hyeon, C. Thermodynamic cost, speed, fluctuations, and error reduction of biological copy machines. J. Phys. Chem. Lett. 11, 3136–3143 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).

    PubMed 

    Google Scholar
     

  • Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • Goodman, M. F. Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc. Natl Acad. Sci. USA 94, 10493–10495 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sartori, P. & Pigolotti, S. Thermodynamics of error correction. Phys. Rev. X 5, 041039 (2015).


    Google Scholar
     

  • Mallory, J. D., Kolomeisky, A. B. & Igoshin, O. A. Trade-offs between error, speed, noise, and energy dissipation in biological processes with proofreading. J. Phys. Chem. B 123, 4718–4725 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Borsley, S., Gallagher, J. M., Leigh, D. A. & Roberts, B. M. W. Ratcheting synthesis. Nat. Rev. Chem. 8, 8–29 (2024).

    PubMed 

    Google Scholar
     

  • Sangchai, T., Al Shehimy, S., Penocchio, E. & Ragazzon, G. Artificial molecular ratchets: tools enabling endergonic processes. Angew. Chem. Int. Ed. 62, e202309501 (2023).

    CAS 

    Google Scholar
     

  • Borsley, S., Leigh, D. A. & Roberts, B. M. W. Molecular ratchets and kinetic asymmetry: giving chemistry direction. Angew. Chem. Int. Ed. 63, e202400495 (2024).

    CAS 

    Google Scholar
     

  • Borsley, S., Leigh, D. A. & Roberts, B. M. W. Chemical fuels for molecular machinery. Nat. Chem. 14, 728–738 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Amano, S. et al. Using catalysis to drive chemistry away from equilibrium: relating kinetic asymmetry, power strokes, and the Curtin–Hammett principle in Brownian ratchets. J. Am. Chem. Soc. 144, 20153–20164 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. 63, e202306569 (2024).

    CAS 

    Google Scholar
     

  • Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).

    CAS 

    Google Scholar
     

  • Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

    CAS 

    Google Scholar
     

  • Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Olivieri, E., Gallagher, J. M., Betts, A., Mrad, T. W. & Leigh, D. A. Endergonic synthesis driven by chemical fuelling. Nat. Synth. 3, 707–714 (2024).

    CAS 

    Google Scholar
     

  • Al Shehimy, S. et al. Progressive endergonic synthesis of Diels–Alder adducts driven by chemical energy. Angew. Chem. Int. Ed. 63, e202411554 (2024).

  • Marchetti, T., Frezzato, D., Gabrielli, L. & Prins, L. J. ATP drives the formation of a catalytic hydrazone through an energy ratchet mechanism. Angew. Chem. Int. Ed. 62, e202307530 (2023).

    CAS 

    Google Scholar
     

  • Ota, E., Wang, H., Frye, N. L. & Knowles, R. R. A redox strategy for light-driven, out-of-equilibrium isomerizations and application to catalytic C–C bond cleavage reactions. J. Am. Chem. Soc. 141, 1457–1462 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).


    Google Scholar
     

  • Walther, A. & Giuseppone, N. Out-of-Equilibrium (Supra)Molecular Systems and Materials (Wiley-VCH, 2021).

  • Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arias-Gonzalez, J. R. Entropy involved in fidelity of DNA deplication. PLoS ONE 7, e42272 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wochner, A., Attwater, J., Coulson, A. & Holliger, P. Ribozyme-catalyzed transcription of an active ribozyme. Science 332, 209–212 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 5, 1011–1018 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee, R., Sengar, A., Cabello-García, J. & Ouldridge, T. E. Kinetic proofreading can enhance specificity in a nonenzymatic DNA strand displacement network. J. Am. Chem. Soc. 146, 18916–18926 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabello-Garcia, J., Mukherjee, R., Bae, W., Stan, G.-B. V. & Ouldridge, T. E. Information propagation through enzyme-free catalytic templating of DNA dimerization with weak product inhibition. Nat. Chem. (2025).

  • Haley, N. E. C. et al. Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nat. Commun. 11, 2562 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amano, S. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. 14, 530–537 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Del Grosso, E., Franco, E., Prins, L. J. & Ricci, F. Dissipative DNA nanotechnology. Nat. Chem. 14, 600–613 (2022).

    PubMed 

    Google Scholar
     

  • Penocchio, E., Bachir, A., Credi, A., Astumian, R. D. & Ragazzon, G. Analysis of kinetic asymmetry in a multi-cycle reaction network establishes the principles for autonomous compartmentalized molecular ratchets. Chem 10, 3644–3655 (2024).

    CAS 

    Google Scholar
     

  • Schormann, N., Ricciardi, R. & Chattopadhyay, D. Uracil‐DNA glycosylases—structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci. 23, 1667–1685 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall-Thomsen, H. et al. Directing uphill strand displacement with an engineered superhelicase. ACS Synth. Biol. 12, 3424–3432 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Mayer, T., Oesinghaus, L. & Simmel, F. C. Toehold-mediated strand displacement in random sequence pools. J. Am. Chem. Soc. 145, 634–644 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Del Grosso, E. et al. Dissipative control over the toehold‐mediated DNA strand displacement reaction. Angew. Chem. Int. Ed. 61, e202201929 (2022).


    Google Scholar
     

  • Binks, L. et al. The role of kinetic asymmetry and power strokes in an information ratchet. Chem 9, 2902–2917 (2023).

    CAS 

    Google Scholar
     

  • Aprahamian, I. & Goldup, S. M. Non-equilibrium steady states in catalysis, molecular motors, and supramolecular materials: why networks and language matter. J. Am. Chem. Soc. 145, 14169–14183 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchetti, T., Roberts, B. M. W., Frezzato, D. & Prins, L. J. A minimalistic covalent bond‐forming chemical reaction cycle that consumes adenosine diphosphate. Angew. Chem. Int. Ed. 63, e202402965 (2024).

    CAS 

    Google Scholar
     

  • Liu, H.-K. et al. Structural influence of the chemical fueling system on a catalysis-driven rotary molecular motor. J. Am. Chem. Soc. 147, 8785–8795 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency in dissipative chemistry. Nat. Commun. 10, 3865 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kar, H., Goldin, L., Frezzato, D. & Prins, L. J. Local self‐assembly of dissipative structures sustained by substrate diffusion. Angew. Chem. Int. Ed. 63, e202404583 (2024).

    CAS 

    Google Scholar
     

  • Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).


    Google Scholar
     

  • Hartich, D., Barato, A. C. & Seifert, U. Nonequilibrium sensing and its analogy to kinetic proofreading. New J. Phys. 17, 055026 (2015).


    Google Scholar
     

  • Ivanov, N. M., Baltussen, M. G., Fernández Regueiro, C. L., Derks, M. T. G. M. & Huck, W. T. S. Computing arithmetic functions using immobilised enzymatic reaction networks. Angew. Chem. Int. Ed. 62, e202215759 (2023).

    CAS 

    Google Scholar
     

  • Ehrich, J. & Sivak, D. A. Energy and information flows in autonomous systems. Front. Phys. 11, 1108357 (2023).

  • Kriebisch, C. M. E. et al. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat. Chem. 16, 1240–1249 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stasi, M. et al. Regulating DNA-hybridization using a chemically fueled reaction cycle. J. Am. Chem. Soc. 144, 21939–21947 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cover, T. M. & Thomas, J. A. Elements of Information Theory Vol. 2012 (John Wiley & Sons, 2012).



  • Source link

    conditions improves Information molecular nonequilibrium ratchet Recognition selectivity
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Tailoring nanoscale interfaces for perovskite–perovskite–silicon triple-junction solar cells

    October 13, 2025

    Gesture Recognition for Busy Hands

    October 13, 2025

    A record-breaking anisotropic van der Waals crystal? – Physics World

    October 12, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025

    ios – Differences in builds between Xcode 16.4 and Xcode 26

    October 13, 2025

    How to run RAG projects for better data analytics results

    October 13, 2025

    MacBook Air deal: Save 10% Apple’s slim M4 notebook

    October 13, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025

    ios – Differences in builds between Xcode 16.4 and Xcode 26

    October 13, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.