Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Israel Hamas deal: The hostage, ceasefire, and peace agreement could have a grim lesson for future wars.

    October 14, 2025

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Ångström-resolution imaging of cell-surface glycans
    Nanotechnology

    Ångström-resolution imaging of cell-surface glycans

    big tee tech hubBy big tee tech hubJuly 28, 2025008 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Ångström-resolution imaging of cell-surface glycans
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Flynn, R. A. et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 184, 3109–3124.e3122 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarbell, J. M. & Cancel, L. M. The glycocalyx and its significance in human medicine. J. Intern. Med. 280, 97–113 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Möckl, L. The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front. Cell Dev. Biol. 8, 253 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, B. A. H. & Bertozzi, C. R. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov. 20, 217–243 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipowsky, H. H. The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Ann. Biomed. Eng. 40, 840–848 (2012).

    PubMed 

    Google Scholar
     

  • Paszek, M. J. et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319–325 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crouch, L. I. et al. The role of glycans in health and disease: regulators of the interaction between gut microbiota and host immune system. Semin. Immunol. 73, 101891 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Pinho, S. S., Alves, I., Gaifem, J. & Rabinovich, G. A. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell. Mol. Immunol. 20, 1101–1113 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Bagdonaite, I. et al. Glycoproteomics. Nat. Rev. Methods Primers 2, 48 (2022).

    CAS 

    Google Scholar
     

  • Wu, X. et al. Imaging single glycans. Nature 582, 375–378 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Arkill, K. P. et al. 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19, 343–351 (2012).

    PubMed 

    Google Scholar
     

  • Möckl, L. et al. Quantitative super-resolution microscopy of the mammalian glycocalyx. Dev. Cell 50, 57–72.e56 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDowell, C. T., Lu, X., Mehta, A. S., Angel, P. M. & Drake, R. R. Applications and continued evolution of glycan imaging mass spectrometry. Mass Spectrom. Rev. 42, 674–705 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Anggara, K. et al. Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 382, 219–223 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebong, E. E., Macaluso, F. P., Spray, D. C. & Tarbell, J. M. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler. Thromb. Vasc. Biol. 31, 1908–1915 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chevalier, L. et al. Electron microscopy approach for the visualization of the epithelial and endothelial glycocalyx. Morphologie 101, 55–63 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Kappler, K. & Hennet, T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun. 21, 224–239 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanley, P. Genetics of glycosylation in mammalian development and disease. Nat. Rev. Genet. 25, 715–729 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Cummings, R. D. et al. in Essentials of Glycobiology (eds Varki, A. et al.) 645–662 (Cold Spring Harbor Laboratory Press, 2022).

  • Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letschert, S. et al. Super-resolution imaging of plasma membrane glycans. Angew. Chem. Int. Ed. Engl. 53, 10921–10924 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aebi, M., Bernasconi, R., Clerc, S. & Molinari, M. N-Glycan structures: recognition and processing in the ER. Trends Biochem. Sci. 35, 74–82 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateos-Gil, P., Letschert, S., Doose, S. & Sauer, M. Super-resolution imaging of plasma membrane proteins with click chemistry. Front. Cell Dev. Biol. 4, 98 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riera, R. et al. Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT. Nat. Chem. Biol. 17, 1281–1288 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Helmerich, D. A. et al. Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier. Nat. Methods 19, 986–994 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhardt, S. C. M. et al. Angstrom-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laughlin, S. T. & Bertozzi, C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat. Protoc. 2, 2930–2944 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Scinto, S. L. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 1, 30 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Axelrod, D., Thompson, N. L. & Burghardt, T. P. Total internal reflection fluorescent microscopy. J. Microsc. 129, 19–28 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Sahl, S. J. et al. Direct optical measurement of intramolecular distances with angstrom precision. Science 386, 180–187 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. Second International Conference on Knowledge Discovery and Data Mining 226–231 (AAAI, 1996).

  • Suzuki, N., Abe, T., Hanzawa, K. & Natsuka, S. Toward robust N-glycomics of various tissue samples that may contain glycans with unknown or unexpected structures. Sci. Rep. 11, 6334 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumer-Bayraktar, Z. et al. N-Glycans modulate the function of human corticosteroid-binding globulin. Mol. Cell. Proteomics 10, M111.009100 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schnaar, R. L. Glycobiology simplified: diverse roles of glycan recognition in inflammation. J. Leukoc. Biol. 99, 825–838 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shurer, C. R. et al. Physical principles of membrane shape regulation by the glycocalyx. Cell 177, 1757–1770.e1721 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raba, G. & Luis, A. S. Mucin utilization by gut microbiota: recent advances on characterization of key enzymes. Essays Biochem. 67, 345–353 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chin-Hun Kuo, J., Gandhi, J. G., Zia, R. N. & Paszek, M. J. Physical biology of the cancer cell glycocalyx. Nat. Phys. 14, 658–669 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakshminarayanan, A., Richard, M. & Davis, B. G. Studying glycobiology at the single-molecule level. Nat. Rev. Chem. 2, 148–159 (2018).

    CAS 

    Google Scholar
     

  • Almahayni, K. & Mockl, L. Setting the stage for universal pharmacological targeting of the glycocalyx. Curr. Top. Membr. 91, 61–88 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Dobie, C. & Skropeta, D. Insights into the role of sialylation in cancer progression and metastasis. Br. J. Cancer 124, 76–90 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Bordron, A. et al. Hyposialylation must be considered to develop future therapies in autoimmune diseases. Int. J. Mol. Sci. 22, 3402 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unterauer, E. M. et al. Spatial proteomics in neurons at single-protein resolution. Cell 187, 1785–1800.e1716 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budiarta, M., Streit, M. & Beliu, G. Site-specific protein labeling strategies for super-resolution microscopy. Curr. Opin. Chem. Biol. 80, 102445 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Hudak, J. E., Canham, S. M. & Bertozzi, C. R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 10, 69–75 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Neelamegham, S. et al. Updates to the symbol nomenclature for glycans guidelines. Glycobiology 29, 620–624 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strauss, S. & Jungmann, R. Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat. Methods 17, 789–791 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halpern, A. R., Howard, M. D. & Vaughan, J. C. Point by point: an introductory guide to sample preparation for single-molecule, super-resolution fluorescence microscopy. Curr. Protoc. Chem. Biol. 7, 103–120 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Edelstein, A. D. et al. Advanced methods of microscope control using muManager software. J. Biol. Methods 1, e10 (2014).

    PubMed 

    Google Scholar
     

  • Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, H., Chen, M., Nguyen, P. & Liu, Y. Toward drift-free high-throughput nanoscopy through adaptive intersection maximization. Sci. Adv. 10, eadm7765 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentley, J. L. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975).


    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Jungmann, R. Glyco-RESI data. Zenodo (2025).

  • Masullo, L. A. github.com/lumasullo/glycans-resi. GitHub (2025).

  • Ives, C. M. et al. Restoring protein glycosylation with GlycoShape. Nat. Methods 21, 2117–2127 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Ångströmresolution cellsurface glycans imaging
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Tailoring nanoscale interfaces for perovskite–perovskite–silicon triple-junction solar cells

    October 13, 2025

    A record-breaking anisotropic van der Waals crystal? – Physics World

    October 12, 2025

    Eco-Friendly Nanoparticles for Water Purification Solutions

    October 12, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Israel Hamas deal: The hostage, ceasefire, and peace agreement could have a grim lesson for future wars.

    October 14, 2025

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025

    ios – Differences in builds between Xcode 16.4 and Xcode 26

    October 13, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    “Bunker Mentality” in AI: Are We There Yet?

    October 14, 2025

    Israel Hamas deal: The hostage, ceasefire, and peace agreement could have a grim lesson for future wars.

    October 14, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.