Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    AI reads brain MRIs in seconds and flags emergencies

    February 11, 2026

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Exposed Training Open the Door for Crypto-Mining in Fortune 500 Cloud Environments

    February 11, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Convergence of nanotechnology and CRISPR-based diagnostics
    Nanotechnology

    Convergence of nanotechnology and CRISPR-based diagnostics

    big tee tech hubBy big tee tech hubOctober 4, 20250010 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Convergence of nanotechnology and CRISPR-based diagnostics
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • van Dongen, J. E. & Segerink, L. I. Building the future of clinical diagnostics: an analysis of potential benefits and current barriers in CRISPR/Cas diagnostics. ACS Synth. Biol. 14, 323–331 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubbers, B. R. et al. The new EU regulation on in vitro diagnostic medical devices: Implications and preparatory actions for diagnostic laboratories. HemaSphere 5, e568 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, T. & Chen, X. Nano for CRISPR. ACS Nano 16, 8505–8506 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chowdhry, R. et al. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol. 41, 1549–1564 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, E. S. et al. Highly efficient on-chip photothermal cell lysis for nucleic acid extraction using localized plasmonic heating of strongly absorbing Au nanoislands. ACS Appl. Mater. Interfaces 15, 34323–34331 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcuccio, F. et al. Single-cell nanobiopsy enables multigenerational longitudinal transcriptomics of cancer cells. Sci. Adv. 10, 515 (2024).

    Article 

    Google Scholar
     

  • Yang, B., Kong, J. & Fang, X. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat. Commun. 13, 3999 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, S. et al. Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano 15, 10309–10317 (2021). This study proposed high-yield capture of viral RNA from 50% human saliva using ssDNA attached to carbon nanotubes, thereby bypassing commercial kits and biofluid purification steps.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogers, J. F. M. et al. Bright fluorescent nucleic acid detection with CRISPR-Cas12a and poly(thymine) templated copper nanoparticles. Biol. Methods Protoc. 6, bpaa020 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Song, J. et al. Elution-free DNA detection using CRISPR/Cas9-mediated light-up aptamer transcription: toward all-in-one DNA purification and detection tube. Biosens. Bioelectron. 225, 115085 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun. 9, 5012 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohsenin, H. et al. Signal-amplifying biohybrid material circuits for CRISPR/Cas-based single-stranded RNA detection. Adv. Mater. Technol. 10, 2400981 (2024).

  • Zhang, S., Xu, D., Li, F. & Wang, J. CRISPR-based non-nucleic acid detection. Trends Biotechnol. (2025).

  • Liu, Z. et al. Determination of adenosine by CRISPR-Cas12a system based on duplexed aptamer and molecular beacon reporter linked to gold nanoparticles. Microchim. Acta 190, 173 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Controllable assembly of a quantum dot-based aptasensor guided by CRISPR/Cas12a for direct measurement of circulating tumor cells in human blood. Nano Lett. 24, 2360–2368 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Applying CRISPR/Cas system as a signal enhancer for DNAzyme-based lead ion detection. Anal. Chim. Acta (2021).

  • Wu, Z., Sun, D. W., Pu, H. & Wei, Q. A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting Aflatoxin B1. Talanta 252, 123773 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, L. et al. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics. Nat. Nanotechnol. 18, 798–807 (2023). This study presented a non-invasive, multiplexed approach for cancer detection and monitoring, combining peptide-conjugated synthetic or biological nanocarriers with a novel DNA barcoding system.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandit, S., Duchow, M., Chao, W., Capasso, A. & Samanta, D. DNA-barcoded plasmonic nanostructures for activity-based protease sensing. Angew. Chem. Int. Ed. 63, e202310964 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Welch, N. L. et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat. Med. 28, 1083–1094 (2022). This study proposed a highly multiplexed microfluidic platform for the rapid detection of SARS-CoV-2 variants with a classification accuracy comparable to sequencing.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, T. et al. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15, 1167–1178 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. CRISPR-powered optothermal nanotweezers: diverse bio-nanoparticle manipulation and single nucleotide identification. Light. Sci. Appl. 12, 273 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, A. et al. RNA-activated CRISPR/Cas12a nanorobots operating in living cells. J. Am. Chem. Soc. (2024). This study presented Cas12a-based nanorobots for the real-time detection of microRNAs in living cells, paving the way for advanced intracellular monitoring and therapeutic applications.

  • Yuan, C. et al. Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Anal. Chem. 92, 4029–4037 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-Valls, M. et al. CASCADE: naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal. Chim. Acta 1205, 339749 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. (2020).

  • MacGregor, S. R. et al. Development of CRISPR/Cas13a-based assays for the diagnosis of Schistosomiasis. EBioMedicine 94, 104730 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Yang, Y., Cao, J., Qi, Z. & Li, G. Point‐of‐care CRISPR/Cas biosensing technology: a promising tool for preventing the possible COVID‐19 resurgence caused by contaminated cold‐chain food and packaging. Food Front. 4, 207–232 (2023).

    Article 

    Google Scholar
     

  • Moon, J. et al. Colorimetric detection of SARS-CoV-2 and drug-resistant pH1N1 using CRISPR/dCas9. ACS Sens. 5, 4017–4026 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samanta, D., Ebrahimi, S. B., Ramani, N. & Mirkin, C. A. Enhancing CRISPR-Cas-mediated detection of nucleic acid and non-nucleic acid targets using enzyme-labeled reporters. J. Am. Chem. Soc. 144, 16310–16315 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, D., Ni, D. S., Fang, M., Shi, Z. & Xu, Z. Microfluidic ruler-readout and CRISPR Cas12a-responded hydrogel-integrated paper-based analytical devices (μReaCH-PAD) for visible quantitative point-of-care testing of invasive fungi. Anal. Chem. 93, 16965–16973 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston, M. et al. Multiplexed biosensor for point-of-care COVID-19 monitoring: CRISPR-powered unamplified RNA diagnostics and protein-based therapeutic drug management. Mater. Today 61, 129–138 (2022). This study introduced a CRISPR-powered, amplification-free technology for monitoring viral RNA alongside antibiotic concentrations, offering a sensitive solution for pandemic response.

    Article 
    CAS 

    Google Scholar
     

  • Tao, X. et al. Sensitive and on-site detection of Staphylococcus aureus based on CRISPR/Cas 13a-assisted chemiluminescence resonance energy transfer. Anal. Chem. 96, 9270–9277 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamsabadi, A., Haghighi, T., Carvalho, S., Frenette, L. C. & Stevens, M. M. The nanozyme revolution: enhancing the performance of medical biosensing platforms. Adv. Mater. 36, 2300184 (2024). This review explored the potential of nanozymes to improve medical biosensing platforms by improving signal amplification and enhancing detection limits.

    Article 
    CAS 

    Google Scholar
     

  • Broto, M. et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. Nat. Nanotechnol. 17, 1120–1126 (2022). This study introduced CrisprZyme, a nanozyme-linked immunosorbent assay that enables preamplification-free, quantitative detection of non-coding RNAs in both plate- and paper-based assay formats.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arshad, F., Abdillah, A. N., Shivanand, P. & Ahmed, M. U. CeO2 nanozyme mediated RPA/CRISPR-Cas12a dual-mode biosensor for detection of invA gene in Salmonella. Biosens. Bioelectron. 247, 115940 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An, P. et al. CRISPR/Cas12a bio-assay integrated with metal-organic framework based enhanced fluorescent labels for ultrasensitive detection of circulating tumor DNA. Sens. Actuat. B 383, 133623 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hong, S. et al. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. Nat. Nanotechnol. 19, 810–817 (2024). This study introduced a low-cost, DNA-templated, Ag-nanocluster-based reporter for nucleic acid detection that changes colour upon CRISPR digestion.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, X. et al. Exploring the trans-cleavage activity of CRISPR/Cas12a on gold nanoparticles for stable and sensitive biosensing. Anal. Chem. 93, 4967–4974 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, T. et al. Designing a CRISPR/Cas12a- and Au-nanobeacon-based diagnostic biosensor enabling direct, rapid, and sensitive miRNA detection. Anal. Chem. 94, 6566–6573 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, C. M. et al. Quantum dot-based molecular beacons for quantitative detection of nucleic acids with CRISPR/Cas(N) nucleases. ACS Nano 16, 20693–20704 (2022). This study presented fluorescently labelled DNA or RNA hairpins conjugated to ZnS-coated quantum dots that form ratiometric reporters for FRET-based detection of DNA and RNA.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. SARS-CoV-2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and CRISPR/Cas13a. Biosens. Bioelectron. 202, 113978 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. Y. et al. A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosens. Bioelectron. 169, 112650 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan, L. et al. Ultrasensitive miRNA detection based on magnetic upconversion nanoparticle enhancement and CRISPR/Cas13a-driven signal amplification. Anal. Chem. 95, 17708–17715 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38, 433–438 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, T. L. et al. Cas9 targeted enrichment of mobile elements using nanopore sequencing. Nat. Commun. 12, 3586 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. A label-free photoelectrochemical biosensor based on CRISPR/Cas12a system responsive deoxyribonucleic acid hydrogel and ‘click’ chemistry. ACS Sens. 7, 3153–3160 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ban, D. K. et al. A single multiomics transistor for electronic detection of SARS-Cov2 variants antigen and viral rna without amplification. Adv. Mater. Technol. 8, 2201945 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Unamplified system for sensitive and typing detection of ASFV by the cascade platform that CRISPR-Cas12a combined with graphene field-effect transistor. Biosens. Bioelectron. 240, 115637 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balderston, S. et al. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 5, 713–725 (2021). This study expands on the use of graphene and Cas9-based FET biosensors for rapid, amplification-free detection of single-point mutations in genomic DNA.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Mxene coupled with CRISPR-Cas12a for analysis of endotoxin and bacteria. Anal. Chem. 93, 4676–4681 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, H. et al. A CRISPR-Cas12a powered electrochemical sensor based on gold nanoparticles and MXene composite for enhanced nucleic acid detection. Sens. Actuat. B 380, 133342 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J., Zhu, Y. & Miao, P. Nano-impact electrochemical biosensing based on a CRISPR-responsive DNA hydrogel. Nano Lett. 23, 11099–11104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 15, 887–907 (2022).

    Article 

    Google Scholar
     

  • Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, J. P. M. et al. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. Nat. Nanotechnol. 19, 705–714 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zargartalebi, H. et al. Active-reset protein sensors enable continuous in vivo monitoring of inflammation. Science 386, 1146–1153 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, Y. et al. Nanopore-based enzyme-linked immunosorbent assay for cancer biomarker detection. Nat. Nanotechnol. (2025).

  • McGenity, C. et al. Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy. npj Digit. Med. 7, 114 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Interactions of bacteria with monolithic lateral silicon nanospikes inside a microfluidic channel. Front. Chem. 7, 483 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Convergence CRISPRbased diagnostics Nanotechnology
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Super-moiré spin textures in twisted two-dimensional antiferromagnets

    February 10, 2026

    Issue 86

    February 10, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    AI reads brain MRIs in seconds and flags emergencies

    February 11, 2026

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Exposed Training Open the Door for Crypto-Mining in Fortune 500 Cloud Environments

    February 11, 2026

    9 Best Cheap Laptops (2026), Tested and Reviewed

    February 11, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    AI reads brain MRIs in seconds and flags emergencies

    February 11, 2026

    In vivo tracking of CAR-T cells in tumors via nanobubble-based contrast enhanced ultrasound

    February 11, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.