Raut, R., Krit, S. & Chatterjee, P. Machine Vision for Industry 4.0: Applications and Case Studies (CRC Press, 2022).
Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).
Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).
Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
Jang, H. et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).
Ma, S. et al. A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors. Sci. Adv. 8, eabn9328 (2022).
Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B. & Delbruck, T. Retinomorphic event-based vision sensors: bioinspired cameras with spiking output. Proc. IEEE 102, 1470–1484 (2014).
Gehrig, D. & Scaramuzza, D. Low-latency automotive vision with event cameras. Nature 629, 1034–1040 (2024).
Paredes-Vallés, F. et al. Fully neuromorphic vision and control for autonomous drone flight. Sci. Robot. 9, eadi0591 (2024).
Dudek, P. et al. Sensor-level computer vision with pixel processor arrays for agile robots. Sci. Robot. 7, eabl7755 (2022).
Gallego, G. et al. Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 154–180 (2022).
Xiao, K., Cui, X., Liu, K., Cui, X. & Wang, X. An SNN-based and neuromorphic-hardware-implementable noise filter with self-adaptive time window for event-based vision sensor. In 2021 International Joint Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2021).
Chakravarthi, B., Verma, A. A., Daniilidis, K., Fermuller, C. & Yang, Y. Recent event camera innovations: a survey. In Computer Vision–ECCV 2024 Workshops (eds Del Bue, A., Canton, C., Pont-Tuset, J. & Tommasi, T.) 342–376 (Springer, 2025).
Perot, E., de Tournemire, P., Nitti, D., Masci, J. & Sironi, A. Learning to detect objects with a 1 megapixel event camera. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 16639–16652 (Curran, 2020).
Schon, G. et al. A 320 × 320 1/5″ BSI-CMOS stacked event sensor for low-power vision applications. In 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 1–2 (IEEE, 2023).
Wu, Y. et al. A spiking artificial vision architecture based on fully emulating the human vision. Adv. Mater. 36, 2312094 (2024).
Zhou, Y. et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 6, 870–878 (2023).
Wu, S.-E. et al. Retinomorphic motion detector fabricated with organic infrared semiconductors. Adv. Sci. 10, 2304688 (2023).
Rogers, K. The Eye: the Physiology of Human Perception (Rosen, 2010).
Gollisch, T. & Meister, M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).
Kandel, E., Koester, J. D., Mack, S. H. & Siegelbaum, S. Principles of Neural Science 6th edn (McGraw Hill, 2021).
Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).
Kim, U. S., Mahroo, O. A., Mollon, J. D. & Yu-Wai-Man, P. Retinal ganglion cells—diversity of cell types and clinical relevance. Front. Neurol. 12, 661938 (2021).
Lee, H. R., Lee, D. & Oh, J. H. A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 33, 2100119 (2021).
Chen, K. et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17, 629–637 (2023).
He, Z. et al. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4, 522–529 (2021).
Li, L. et al. Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nat. Commun. 15, 6261 (2024).
Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).
Lee, Y. et al. Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 4, eaat7387 (2018).
Tan, H. & van Dijken, S. Dynamic machine vision with retinomorphic photomemristor–reservoir computing. Nat. Commun. 14, 2169 (2023).
Kolb, H. in Webvision: The Organization of the Retina and Visual System (eds. Kolb, H. et al.) (University of Utah Health Sciences Center, 1995).
Baylor, D. How photons start vision. Proc. Natl Acad. Sci. USA 93, 560–565 (1996).
Schnapf, J. L. & Copenhagen, D. R. Differences in the kinetics of rod and cone synaptic transmission. Nature 296, 862–864 (1982).
DeVries, S. H. & Schwartz, E. A. Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 397, 157–160 (1999).
Baden, T., Berens, P., Bethge, M. & Euler, T. Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr. Biol. 23, 48–52 (2013).
Maguire, G. Rapid desensitization converts prolonged glutamate release into a transient EPSC at ribbon synapses between retinal bipolar and amacrine cells. Eur. J. Neurosci. 11, 353–362 (1999).
Torre, V., Ashmore, J., Lamb, T. & Menini, A. Transduction and adaptation in sensory receptor cells. J. Neurosci. 15, 7757–7768 (1995).
Thoreson, W. B., Babai, N. & Bartoletti, T. M. Feedback from horizontal cells to rod photoreceptors in vertebrate retina. J. Neurosci. 28, 5691–5695 (2008).
Smirnakis, S. M., Berry, M. J., Warland, D. K., Bialek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997).
Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).
Münch, T. A. et al. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12, 1308–1316 (2009).
Shapley, R. & Enroth-Cugell, C. Visual adaptation and retinal gain controls. Prog. Retin. Res. 3, 263–346 (1984).
Lee, B. B., Pokorny, J., Smith, V. C., Martin, P. R. & Valbergt, A. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J. Opt. Soc. Am. A 7, 2223–2236 (1990).
Florey, E. in From Neuron to Action (eds. Deecke, L. et al.) 413–419 (Springer, 1990).
Wang, J. et al. Physical insights into non-fullerene organic photovoltaics. Nat. Rev. Phys. 1, 365–381 (2024).
Watson, A. B. in Handbook of Perception and Human Performance Vol. 1 (eds Boff, K. R. et al.) Chap. 6 (Wiley-Interscience, 1986).
Lian, J., Vatansever, Z., Noshad, M. & Brandt-Pearce, M. Indoor visible light communications, networking, and applications. J. Phys.: Photon. 1, 012001 (2019).
Adiono, T. & Fuada, S. Optical interference noise filtering over visible light communication system utilizing analog high-pass filter circuit. In 2017 International Symposium on Nonlinear Theory and Its Applications (eds Ueta, T. et al.) 616–619 (IEICE, 2017).
Normann, R. A. & Werblin, F. S. Control of retinal sensitivity: I. Light and dark adaptation of vertebrate rods and cones. J. Gen. Physiol. 63, 37–61 (1974).
Kelly, D. H. Adaptation effects on spatio-temporal sine-wave thresholds. Vis. Res. 12, 89–101, IN1 (1972).
Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).
Huseynova, G. et al. Benzyl viologen as an n-type dopant for organic semiconductors. Org. Electron. 62, 572–580 (2018).
Lu, G., Shen, Z., Wang, H., Bu, L. & Lu, G. Optical interference on the measurement of film-depth-dependent light absorption spectroscopy and a correction approach. Rev. Sci. Instrum. 94, 023907 (2023).
Chen, K. et al. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 21, 4500–4507 (2021).
Rebecq, H., Ranftl, R., Koltun, V. & Scaramuzza, D. High speed and high dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1964–1980 (2021).
Code for the paper “High Speed and High Dynamic Range Video with an Event Camera” (T-PAMI, 2019). GitHub (2019).
