Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Ferroelectric topologies in BaTiO3 nanomembranes for light field manipulation
    Nanotechnology

    Ferroelectric topologies in BaTiO3 nanomembranes for light field manipulation

    big tee tech hubBy big tee tech hubApril 26, 2025007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Ferroelectric topologies in BaTiO3 nanomembranes for light field manipulation
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Jia, C.-L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivry, Y., Chu, D. P., Scott, J. F. & Durkan, C. Flux closure vortexlike domain structures in ferroelectric thin films. Phys. Rev. Lett. 104, 207602 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. L. et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547–551 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nahas, Y. et al. Inverse transition of labyrinthine domain patterns in ferroelectric thin films. Nature 577, 47–51 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sánchez-Santolino, G. et al. A 2D ferroelectric vortex pattern in twisted BaTiO3 freestanding layers. Nature 626, 529–534 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Subterahertz collective dynamics of polar vortices. Nature 592, 376–380 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Nat. Acad. Sci. USA 115, 915–920 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behera, P. et al. Electric field control of chirality. Sci. Adv. 8, eabj8030 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, H. et al. Electric field-manipulated optical chirality in ferroelectric vortex domains. Adv. Mater. 36, e2408400 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–56 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Junquera, J. et al. Topological phases in polar oxide nanostructures. Rev. Mod. Phys. 95, 025001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jisha, C. P., Nolte, S. & Alberucci, A. Geometric phase in optics: from wavefront manipulation to waveguiding. Laser Photonics Rev. (2021).

  • Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 23, 23072–23078 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, S., Zhu, Y. & Ming, N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X. et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496–501 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Broadband spin and orbital momentum modulator using self-assembled nanostructures. Adv. Mater. 36, 2412007 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ni, J. C. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Recent advances on optical vortex generation. Nanophotonics 7, 1533–1556 (2018).

    Article 

    Google Scholar
     

  • Bai, Y., Lv, H., Fu, X. & Yang, Y. Vortex beam: generation and detection of orbital angular momentum. Chin. Opt. Lett. 20, 012601 (2022).

    Article 

    Google Scholar
     

  • Yao, J. et al. Generation of optical vortices by diffraction from circular apertures. ACS Photonics 10, 4267–4272 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. Advances in communications using optical vortices. Photonics Res. 4, B14–B28 (2016).

    Article 

    Google Scholar
     

  • Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 14, 102–108 (2019).

    Article 

    Google Scholar
     

  • Tan, C. et al. Engineering polar vortex from topologically trivial domain architecture. Nat. Commun. 12, 4620 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Govinden, V. et al. Ferroelectric solitons crafted in epitaxial bismuth ferrite superlattices. Nat. Commun. 14, 4178 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. Y. et al. Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat. Commun. 13, 4332 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, D. X. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S. S. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 368, 71–76 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pugachev, A. M. et al. Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation. Phys. Rev. Lett. 108, 247601 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denev, S. A., Lummen, T. T. A., Barnes, E., Kumar, A. & Gopalan, V. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cherifi-Hertel, S. et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 8, 15768 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796–808 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. et al. in Fundamentals and Applications of Nonlinear Nanophotonics (ed. Panoiu N. C.) 393–440 (Elsevier, 2024).

  • Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607–612 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, C. Q. et al. Domain evolution in bended freestanding BaTiO3 ultrathin films: a phase-field simulation. Appl. Phys. Lett. 116, 152903 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Balke, N. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868–875 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matzen, S. et al. Super switching and control of in-plane ferroelectric nanodomains in strained thin films. Nat. Commun. 5, 4415 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Goodman, J. W. Introduction to Fourier Optics 3rd edn (Roberts & Company, 2005).

  • Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics 14, 498–503 (2020).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    BaTiO3 Ferroelectric field light manipulation nanomembranes topologies
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.