Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    A deep dive into Apple’s AI strategy reset, as it prepares to announce a Gemini-powered personalized Siri next month and a reimagined chatbot-like Siri at WWDC (Mark Gurman/Bloomberg)

    January 25, 2026

    European Space Agency’s cybersecurity in freefall as yet another breach exposes spacecraft and mission data

    January 25, 2026

    The human brain may work more like AI than anyone expected

    January 25, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Fundamental optical phenomena of strongly anisotropic polaritons at the nanoscale
    Nanotechnology

    Fundamental optical phenomena of strongly anisotropic polaritons at the nanoscale

    big tee tech hubBy big tee tech hubJanuary 8, 20260222 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Fundamental optical phenomena of strongly anisotropic polaritons at the nanoscale
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Basov, D., Fogler, M. & García de Abajo, F. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).

    Article 

    Google Scholar
     

  • Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat. Commun. 15, 69 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).

    Article 

    Google Scholar
     

  • Wei, H., Wang, Z., Tian, X., Käll, M. & Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, P. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light. Sci. Appl. 7, 17172 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolado, I. et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Coles, D. M. et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712–719 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, M., Hertzog, M. & Börjesson, K. Polariton-assisted excitation energy channeling in organic heterojunctions. Nat. Commun. 12, 1874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruta, F. L. et al. Good plasmons in a bad metal. Science 387, 786–791 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). This reference reports the real-space mapping of the hyperbolic phonon polaritons in van der Waals crystals of boron nitride.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). References 19 and 78 independently demonstrated real-space visualization of gate-tunable plasmon polaritons in graphene.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ni, G. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mester, L., Govyadinov, A. A., Chen, S., Goikoetxea, M. & Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hillenbrand, R., Abate, Y., Liu, M., Chen, X. & Basov, D. Visible-to-THz near-field nanoscopy. Nat. Rev. Mater. 10, 285–310 (2025).

  • Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, H., Wang, L., Jakob, D. S. & Xu, X. G. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode. Nat. Commun. 9, 2005 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Broadband near-infrared hyperbolic polaritons in MoOCl2. Nat. Commun. 16, 6172 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, S.-F. et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 377, 1112–1116 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 Interface. Nano Lett. 11, 4701–4705 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, A. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guan, F. et al. Overcoming losses in superlenses with synthetic waves of complex frequency. Science 381, 766–771 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). This reference reports the real-space imaging of hyperbolic polariton propagation along the surface of molybdenum trioxide, exhibiting ultra-confined wavelength (up to 60-times smaller than the corresponding photon wavelengths) and ultralong lifetime (about 8 ps).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020). References 30, 36, 39 and 40 independently demonstrated flattened polariton dispersion at thephotonic magic angle in twisted bilayers of molybdenum trioxide, exhibiting low-loss polariton canalization anddiffractionless propagation.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Herzig Sheinfux, H. & Koppens, F. H. The rise of twist-optics. Nano Lett. 20, 6935–6936 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Obst, M. et al. Terahertz twistoptics—engineering canalized phonon polaritons. ACS Nano 17, 19313–19322 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Sci. Adv. 7, eabf2690 (2021). This reference reports the observation of topological transition of polariton dispersion from hyperbolic (open along x direction) to hyperbolic (open along y direction) IFCs, yielding a ray-like propagation with linear-crossing IFCs.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Terán-García, E. et al. Real-space visualization of canalized ray polaritons in a single van der Waals thin slab. Nano Lett. 25, 2203–2209 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shao, Y. et al. Infrared plasmons propagate through a hyperbolic nodal metal. Sci. Adv. 8, eadd6169 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guo, P. et al. Hyperbolic dispersion arising from anisotropic excitons in two-dimensional perovskites. Phys. Rev. Lett. 121, 127401 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ambrosio, A. et al. Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light. Sci. Appl. 7, 27 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).

    Article 

    Google Scholar
     

  • Venturi, G., Mancini, A., Melchioni, N., Chiodini, S. & Ambrosio, A. Visible-frequency hyperbolic plasmon polaritons in a natural van der Waals crystal. Nat. Commun. 15, 9727 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Excitonic negative refraction mediated by magnetic orders. Preprint at Research Square (2024).

  • Rizzo, D. J. et al. Uniaxial plasmon polaritons via charge transfer at the graphene/CrSBr interface. Preprint at (2024).

  • Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • F. Tresguerres-Mata, A. I. et al. Observation of naturally canalized phonon polaritons in LiV2O5 thin layers. Nat. Commun. 15, 2696 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der waals semiconductor α-MoO3 from near-and far-field correlative studies. Adv. Mater. 32, 1908176 (2020).

    Article 

    Google Scholar
     

  • Duan, J. et al. Launching phonon polaritons by natural boron nitride wrinkles with modifiable dispersion by dielectric environments. Adv. Mater. 29, 1702494 (2017).

    Article 

    Google Scholar
     

  • Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

  • Matson, J. et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 14, 5240 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ermolaev, G. A. et al. Wandering principal optical axes in van der Waals triclinic materials. Nat. Commun. 15, 1552 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Canalization-based super-resolution imaging using an individual van der Waals thin layer. Sci. Adv. 11, eads0569 (2025). This reference demonstrates a proof-of-concept application of polariton canalization: super-resolution nanoimaing (~λ0/220, with λ0 the wavelength of free-space light).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chaudhary, K. et al. Polariton nanophotonics using phase-change materials. Nat. Commun. 10, 4487 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023). References 68 and 70 independently demonstrate in-plane and out-of-plane negative refraction of mid-infrared phonon polaritons at theinterface between van der Waals materials.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, X. et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sternbach, A. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023). This reference reports the observation of multiple spectrally robust photonic magic angles in reconfigurable twisted molybdenum trioxide trilayers, where polariton canalization can be programmed at will along any desired in-plane direction.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng, C. et al. Hyperbolic-to-hyperbolic transition at exceptional Reststrahlen point in rare-earth oxyorthosilicates. Nat. Commun. 15, 7047 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Álvarez-Cuervo, J. et al. Unidirectional ray polaritons in twisted asymmetric stacks. Nat. Commun. 15, 9042 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín-Sánchez, J. et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Sci. Adv. 7, eabj0127 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Álvarez-Pérez, G., Voronin, K. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).

    Article 

    Google Scholar
     

  • Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Active and passive tuning of ultranarrow resonances in polaritonic nanoantennas. Adv. Mater. 34, 2104954 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lv, J. et al. Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes. Nat. Commun. 14, 3894 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sunku, S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lv, H. et al. Tailoring phonon polaritons with a single-layer photonics-empowered polaritonic crystal. Nano Lett. 12, 4946–4953 (2025).

    Article 

    Google Scholar
     

  • Sun, T. et al. Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics. Nat. Nanotechnol. 19, 758–765 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Van der Waals isotope heterostructures for engineering phonon polariton dispersions. Nat. Commun. 14, 4782 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, N. et al. Phonon transition across an isotopic interface. Nat. Commun. 14, 2382 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Ultralow-loss phonon polaritons in the isotope-enriched α-MoO3. Nano Lett. 22, 10208–10215 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun. 11, 2646 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Efficient and tunable reflection of phonon polaritons at built-in intercalation interfaces. Adv. Mater. 33, 2008070 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shen, J. et al. Charge-transfer hyperbolic polaritons in α-MoO3/graphene heterostructures. Appl. Phys. Rev. 11, 021409 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moore, S. et al. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat. Commun. 12, 5741 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ni, G. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hesp, N. C. et al. Observation of interband collective excitations in twisted bilayer graphene. Nat. Phys. 17, 1162–1168 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, T. et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature 605, 63–68 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Hyperbolic phonon polaritons in suspended hexagonal boron nitride. Nano Lett. 19, 1009–1014 (2018).

    Article 

    Google Scholar
     

  • Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Tunable low loss 1D surface plasmons in InAs nanowires. Adv. Mater. 30, 1802551 (2018).

    Article 

    Google Scholar
     

  • Fali, A. et al. Refractive index-based control of hyperbolic phonon-polariton propagation. Nano Lett. 19, 7725–7734 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, M. et al. Polariton design and modulation via van der Waals/doped semiconductor heterostructures. Nat. Commun. 14, 7965 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dubrovkin, A. M. et al. Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons. Nat. Commun. 11, 1863 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dubrovkin, A. M., Qiang, B., Krishnamoorthy, H. N. S., Zheludev, N. I. & Wang, Q. J. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun. 9, 1762 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, J. et al. Hyperbolic phonon polaritons with positive and negative phase velocities in suspended α-MoO3. Appl. Phys. Lett. 120, 113101 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhary, K. et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, I.-H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Menabde, S. G. et al. Low-loss anisotropic image polaritons in van der Waals crystal α-MoO3. Adv. Opt. Mater. 10, 2201492 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Menabde, S. G. et al. Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. Sci. Adv. 8, eabn0627 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Orsini, L. et al. Deep subwavelength topological edge state in a hyperbolic medium. Nat. Nanotechnol. 19, 1485–1490 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021). References 122 and 123 demonstrate that plasmon polaritons can be dragged by drifting electrons in the 2D material graphene.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, W. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pogna, E. A. et al. Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies. Nat. Commun. 15, 2373 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao, H. et al. Tunable anisotropic plasmons in monolayer Ca4N2 induced by orbital-selective transitions. Opt. Express 32, 45197–45206 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xing, Q. et al. Tunable anisotropic van der Waals films of 2M-WS2 for plasmon canalization. Nat. Commun. 15, 2623 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Luo, Y. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, M. et al. Spin–orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight 2, 12 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, L. et al. Polaritonic vortices with a half-integer charge. Nano Lett. 21, 9256–9261 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guan, F. et al. Compensating losses in polariton propagation with synthesized complex frequency excitation. Nat. Mater. 23, 506–511 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, S., Krasnok, A. & Alù, A. Complex-frequency excitations in photonics and wave physics. Science 387, eado4128 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sternbach, A. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 5, eaat9618 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fu, R. et al. Manipulating hyperbolic transient plasmons in a layered semiconductor. Nat. Commun. 15, 709 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures. Nat. Commun. 14, 7686 (2023). This reference reports real-space imaging of surface phonon polaritons in SrTiO3 and LaAlO3/SrTiO3 heterostructures at cryogenic temperatures as well as the thermal tunability of polaritonic properties.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Taboada-Gutiérrez, J. et al. Unveiling the mechanism of phonon-polariton damping in α-MoO3. ACS Photon.11, 3570–3577 (2024).

    Article 

    Google Scholar
     

  • Duan, J. & Zhou, Y. Magnetic order as a tuning knob for Coulomb correlation. Nat. Mater. 24, 332–333 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liebich, M. et al. Controlling Coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order. Nat. Mater. 24, 384–390 (2025). References 143 and 144 demonstrate that antiferromagnetic order blocks interlayerhopping of electron–hole pairs in a two-dimensional magnetic semiconductor (CrSBr), leading to the formation ofmagnetic surface excitons with quasi-one-dimensional quantum confinement.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shao, Y. et al. Magnetically confined surface and bulk excitons in a layered antiferromagnet. Nat. Mater. 24, 391–398 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, M. et al. Guided mid-IR and near-IR light within a hybrid hyperbolic-material/silicon waveguide heterostructure. Adv. Mater. 33, 2004305 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Z. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pei, Y., Chen, L., Jeon, W., Liu, Z. & Chen, R. Low-dimensional heat conduction in surface phonon polariton waveguide. Nat. Commun. 14, 8242 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Boroviks, S. et al. Extremely confined gap plasmon modes: when nonlocality matters. Nat. Commun. 13, 3105 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photon. 5, 283–287 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herzig Sheinfux, H. et al. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jäckering, L. et al. Super-resolution imaging of nanoscale inhomogeneities in hBN-covered and encapsulated few-layer graphene. Adv. Sci. 12, 2409039 (2025).

    Article 

    Google Scholar
     

  • He, M. et al. Ultrahigh-resolution, label-free hyperlens imaging in the mid-IR. Nano Lett. 21, 7921–7928 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bylinkin, A. et al. On-chip phonon-enhanced IR near-field detection of molecular vibrations. Nat. Commun. 15, 8907 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bylinkin, A. et al. Dual-band coupling of phonon and surface plasmon polaritons with vibrational and electronic excitations in molecules. Nano Lett. 23, 3985–3993 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arora, S., Bauer, T., Barczyk, R., Verhagen, E. & Kuipers, L. Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths. Light. Sci. Appl. 10, 9 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smirnova, D. et al. Polaritonic states trapped by topological defects. Nat. Commun. 15, 6355 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Far-Field spectroscopy and near-field optical imaging of coupled plasmon–phonon polaritons in 2D van der Waals heterostructures. Adv. Mater. 28, 2931–2938 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Machine learning for optical scanning probe nanoscopy. Adv. Mater. 35, 2109171 (2023).

    Article 
    CAS 

    Google Scholar
     

  • García de Abajo, F. J. Graphene plasmonics: challenges and opportunities. ACS Photon. 1, 135–152 (2014).

    Article 

    Google Scholar
     

  • Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Luan, Y. et al. Imaging anisotropic waveguide exciton polaritons in tin sulfide. Nano Lett. 22, 1497–1503 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sternbach, A. J. et al. Femtosecond exciton dynamics in WSe2 optical waveguides. Nat. Commun. 11, 3567 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, W. et al. Observation of hydrodynamic plasmons and energy waves in graphene. Nature 614, 688–693 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Source link

    anisotropic fundamental Nanoscale Optical phenomena polaritons strongly
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Non-Abelian anyons: anything but easy

    January 25, 2026

    Nanomaterials Transformed by Engineering Shape, Not Chemistry

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    A deep dive into Apple’s AI strategy reset, as it prepares to announce a Gemini-powered personalized Siri next month and a reimagined chatbot-like Siri at WWDC (Mark Gurman/Bloomberg)

    January 25, 2026

    European Space Agency’s cybersecurity in freefall as yet another breach exposes spacecraft and mission data

    January 25, 2026

    The human brain may work more like AI than anyone expected

    January 25, 2026

    Non-Abelian anyons: anything but easy

    January 25, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    A deep dive into Apple’s AI strategy reset, as it prepares to announce a Gemini-powered personalized Siri next month and a reimagined chatbot-like Siri at WWDC (Mark Gurman/Bloomberg)

    January 25, 2026

    European Space Agency’s cybersecurity in freefall as yet another breach exposes spacecraft and mission data

    January 25, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.