Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Inside the ‘Let’s Break It Down’ Series for Network Newbies

    October 13, 2025

    SVS Engineers: Who are the people that test-drive your network?

    October 12, 2025

    macOS Sequoia (version 15) is now available for your Mac with some big upgrades

    October 12, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Artificial Intelligence»Harvard’s ultra-thin chip could revolutionize quantum computing
    Artificial Intelligence

    Harvard’s ultra-thin chip could revolutionize quantum computing

    big tee tech hubBy big tee tech hubJuly 31, 2025004 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Harvard’s ultra-thin chip could revolutionize quantum computing
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


    • New research shows that metasurfaces could be used as strong linear quantum optical networks
    • This approach could eliminate the need for waveguides and other conventional optical components
    • Graph theory is helpful for designing the functionalities of quantum optical networks into a single metasurface

    In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled – enabling them to encode and process quantum information in parallel – through complex networks of these optical components. But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.

    Could all those optical components could be collapsed into a single, flat, ultra-thin array of subwavelength elements that control light in the exact same way, but with far fewer fabricated parts?

    Optics researchers in the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) did just that. The research team led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, created specially designed metasurfaces — flat devices etched with nanoscale light-manipulating patterns — to act as ultra-thin upgrades for quantum-optical chips and setups.

    The research was published in Science and funded by the Air Force Office of Scientific Research (AFOSR).

    Capasso and his team showed that a metasurface can create complex, entangled states of photons to carry out quantum operations – like those done with larger optical devices with many different components.

    “We’re introducing a major technological advantage when it comes to solving the scalability problem,” said graduate student and first author Kerolos M.A. Yousef. “Now we can miniaturize an entire optical setup into a single metasurface that is very stable and robust.”

    Metasurfaces: Robust and scalable quantum photonics processors

    Their results hint at the possibility of paradigm-shifting optical quantum devices based not on conventional, difficult-to-scale components like waveguides and beam splitters, or even extended optical microchips, but instead on error-resistant metasurfaces that offer a host of advantages: designs that don’t require intricate alignments, robustness to perturbations, cost-effectiveness, simplicity of fabrication, and low optical loss. Broadly speaking, the work embodies metasurface-based quantum optics which, beyond carving a path toward room-temperature quantum computers and networks, could also benefit quantum sensing or offer “lab-on-a-chip” capabilities for fundamental science

    Designing a single metasurface that can finely control properties like brightness, phase, and polarization presented unique challenges because of the mathematical complexity that arises once the number of photons and therefore the number of qubits begins to increase. Every additional photon introduces many new interference pathways, which in a conventional setup would require a rapidly growing number of beam splitters and output ports.

    Graph theory for metasurface design

    To bring order to the complexity, the researchers leaned on a branch of mathematics called graph theory, which uses points and lines to represent connections and relationships. By representing entangled photon states as many connected lines and points, they were able to visually determine how photons interfere with each other, and to predict their effects in experiments. Graph theory is also used in certain types of quantum computing and quantum error correction but is not typically considered in the context of metasurfaces, including their design and operation.

    The resulting paper was a collaboration with the lab of Marko Loncar, whose team specializes in quantum optics and integrated photonics and provided needed expertise and equipment.

    “I’m excited about this approach, because it could efficiently scale optical quantum computers and networks — which has long been their biggest challenge compared to other platforms like superconductors or atoms,” said research scientist Neal Sinclair. “It also offers fresh insight into the understanding, design, and application of metasurfaces, especially for generating and controlling quantum light. With the graph approach, in a way, metasurface design and the optical quantum state become two sides of the same coin.”

    The research received support from federal sources including the AFOSR under award No. FA9550-21-1-0312. The work was performed at the Harvard University Center for Nanoscale Systems



    Source link

    Chip computing Harvards Quantum revolutionize Ultrathin
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Posit AI Blog: Introducing the text package

    October 12, 2025

    Edge Computing for AI – Ready for the AI Revolution

    October 12, 2025

    Building connected data ecosystems for AI at scale

    October 11, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Inside the ‘Let’s Break It Down’ Series for Network Newbies

    October 13, 2025

    SVS Engineers: Who are the people that test-drive your network?

    October 12, 2025

    macOS Sequoia (version 15) is now available for your Mac with some big upgrades

    October 12, 2025

    Building a real-time ICU patient analytics pipeline with AWS Lambda event source mapping

    October 12, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Inside the ‘Let’s Break It Down’ Series for Network Newbies

    October 13, 2025

    SVS Engineers: Who are the people that test-drive your network?

    October 12, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.