Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries
    Nanotechnology

    Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries

    big tee tech hubBy big tee tech hubApril 4, 2025009 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1–16 (2017).

    Article 

    Google Scholar
     

  • Wan, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhury, S. Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat. Commun. 10, 4398 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, T. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hatzell, K. B. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, 1905219 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Glynos, E., Pantazidis, C. & Sakellariou, G. Designing all-polymer nanostructured solid electrolytes: advances and prospects. ACS Omega 5, 2531–2540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, G. et al. Trade-offs between ion-conducting and mechanical properties: the case of polyacrylate electrolytes. Carbon Energy 5, e287 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. J. Am. Chem. Soc. 135, 9652–9655 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, B. K., Jain, A., Gruner, S. M. & Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1598–1601 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grundy, L. S. et al. Inaccessible polarization-induced phase transitions in a block copolymer electrolyte: an unconventional mechanism for the limiting current. Macromolecules 55, 7637–7649 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Galluzzo, M. D., Loo, W. S., Schaible, E., Zhu, C. & Balsara, N. P. Dynamic structure and phase behavior of a block copolymer electrolyte under dc polarization. ACS Appl. Mater. Interfaces 12, 57421–57430 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Virgili, J. M., Nedoma, A. J., Segalman, R. A. & Balsara, N. P. Ionic liquid distribution in ordered block copolymer solutions. Macromolecules 43, 3750–3756 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gomez, E. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9, 1212–1216 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. H., Ye, Y., Elabd, Y. A. & Winey, K. I. Network structure and strong microphase separation for high ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46, 5290–5300 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Trends Chem. 1, 845–857 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sharon, D. et al. Molecular level differences in ionic solvation and transport behavior in ethylene oxide-based homopolymer and block copolymer electrolytes. J. Am. Chem. Soc. 143, 3180–3190 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chintapalli, M. et al. Structure and ionic conductivity of polystyrene-block-poly(ethylene oxide) electrolytes in the high salt concentration limit. Macromolecules 49, 1770–1780 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shen, K. H. & Hall, L. M. Ion conductivity and correlations in model salt-doped polymers: effects of interaction strength and concentration. Macromolecules 53, 3655–3668 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y., Ma, B. & Bai, P. Overlimiting ion transport dynamic toward Sand’s time in solid polymer electrolytes. Mater. Today Energy 27, 101037 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y., Ma, B. & Bai, P. Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy Environ. Sci. 13, 3504–3513 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Q. et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat. Commun. 9, 2942 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devaux, D. et al. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kaboli, S. et al. Behavior of solid electrolyte in Li-polymer battery with NMC cathode via in-situ scanning electron microscopy. Nano Lett. 20, 1607–1613 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Golozar, M. et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries. Nano Lett. 18, 7583–7589 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maslyn, J. A. et al. Growth of lithium dendrites and globules through a solid block copolymer electrolyte as a function of current density. J. Phys. Chem. C 122, 26797–26804 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Harry, K. J., Liao, X., Parkinson, D. Y., Minor, A. M. & Balsara, N. P. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J. Electrochem. Soc. 162, A2699–A2706 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Andersson, E. K. W. et al. Early-stage decomposition of solid polymer electrolytes in Li-metal batteries. J. Mater. Chem. A 9, 22462–22471 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Multi-scale characterization techniques for polymer-based solid-state lithium batteries. Macromol. Chem. Phys. 224, 2200351 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bostwick, J. E. et al. Ionic interactions control the modulus and mechanical properties of molecular ionic composite electrolytes. J. Mater. Chem. C 10, 947–957 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, D. et al. Room temperature to 150 °C lithium metal batteries enabled by a rigid molecular ionic composite electrolyte. Adv. Energy Mater. 11, 2003559 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fox, R. J. et al. Nanofibrillar ionic polymer composites enable high-modulus ion-conducting membranes. ACS Appl. Mater. Interfaces 11, 40551–40563 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 28, 2571–2578 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bostwick, J. E. et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes. Macromolecules 53, 1405–1414 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. Double helical conformation and extreme rigidity in a rodlike polyelectrolyte. Nat. Commun. 10, 801 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z., He, Y., Wang, Y., Madsen, L. A. & Qiao, R. Molecular structure and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir 33, 322–331 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forsyth, M., Porcarelli, L., Wang, X., Goujon, N. & Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasanpoor, M. et al. Morphological evolution and solid-electrolyte interphase formation on LiNi0.6Mn0.2Co0.2O2 cathodes using highly concentrated ionic liquid electrolytes. ACS Appl. Mater. Interfaces 14, 13196–13205 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, D., Zanelotti, C. J., Fox, R. J., Dingemans, T. J. & Madsen, L. A. Solvent-cast solid electrolyte membranes based on a charged rigid-rod polymer and ionic liquids. ACS Appl. Energy Mater. 4, 6599–6605 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Q. et al. Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||graphite cells. ACS Appl. Energy Mater. 3, 695–704 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H., Maglia, F., Lamp, P., Amine, K. & Chen, Z. Mechanistic study of electrolyte additives to stabilize high-voltage cathode-electrolyte interface in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 44542–44549 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swiderska-Mocek, A. & Gabryelczyk, A. Interfacial stabilizing effect of lithium borates and pyrrolidinium ionic liquid in gel polymer electrolytes for lithium-metal batteries. J. Phys. Chem. C 127, 18875–18890 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Direct observation of the redistribution of sulfur and polysulfides in Li-S batteries during first cycle by in situ X-ray fluorescence microscopy. Adv. Energy Mater. 5, 1500072 (2015).

    Article 

    Google Scholar
     

  • Freiberg, A. T. S. et al. Species in lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy and X-ray fluorescence mapping. J. Phys. Chem. C 122, 5303–5316 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sun, B. et al. At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994–14000 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vairavamurthy, A. Using X-ray absorption to probe sulfur oxidation states in complex molecules. Spectrochim. Acta A 54, 2009–2017 (1998).

    Article 

    Google Scholar
     

  • Lin, Z. et al. High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Energy 9, 408–416 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pickering, I. J., Prince, R. C., Divers, T. & George, G. N. Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Lett. 441, 11–14 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dey, A. et al. Sulfur K-edge XAS and DFT calculations on nitrile hydratase: geometric and electronic structure of the non-heme iron active site. J. Am. Chem. Soc. 128, 533–541 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dezarnaud, C., Tronc, M. & Hitchcock, A. P. Inner shell spectroscopy of the carbon—sulfur bond. Chem. Phys. 142, 455–462 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Jalilehvand, F. Sulfur: not a “silent” element any more. Chem. Soc. Rev. 35, 1256–1268 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Batteries effect electrodemultiphase electrolyte heterogeneities highpotential interfaces Investigating Lithium Polymer
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.