Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Big milestone for the future of quantum computing.

    July 18, 2025

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    eSIM tech flaw exposes smartphones to serious hacking risks

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte solutions for high-potential lithium-based batteries
    Nanotechnology

    Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte solutions for high-potential lithium-based batteries

    big tee tech hubBy big tee tech hubApril 8, 2025006 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte solutions for high-potential lithium-based batteries
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, L. et al. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells. Nat. Energy 7, 186–193 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. 4.0 V aqueous Li-ion batteries. Joule 1, 122–132 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, H., Wang, Y., Na, H., Liu, H. & Zhou, H. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J. Am. Chem. Soc. 131, 15098–15099 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., He, P. & Zhou, H. A lithium–air capacitor–battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Y. et al. Advanced hybrid electrolyte Li-O2 battery realized by dual superlyophobic membrane. Joule 3, 2986–3001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S., Zhang, F., Ding, H., He, P. & Zhou, H. Lithium metal extraction from seawater. Joule 2, 1648–1651 (2018).

    Article 

    Google Scholar
     

  • Chao, D. & Qiao, S.-Z. Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020).

    Article 

    Google Scholar
     

  • Jackson, D. T. & Nelson, P. N. Preparation and properties of some ion selective membranes: a review. J. Mol. Struct. 1182, 241–259 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Busche, M. R. et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benjamin, I. Recombination, dissociation, and transport of ion pairs across the liquid/liquid interface. Implications for phase transfer catalysis. J. Phys. Chem. B 117, 4325–4331 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volkov, A. G. in Interfacial Catalysis (ed. Volkov, A. G.) Ch. 1 (CRC Press, 2002).

  • Shirakawa, S. & Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Suo, L. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 128, 7252–7257 (2016).

    Article 

    Google Scholar
     

  • Fakhari, A. R. & Shamsipur, M. An NMR study of the stoichiometry and stability of lithium ion complexes with 12-crown-4, 15-crown-5 and 18-crown-6 in binary acetonitrile-nitrobenzene mixtures. J. Incl. Phenom. Macrocycl. Chem. 26, 243–251 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Shamsipur, M. & Madrakian, T. Competitive NMR study of the complexation of some alkaline earth and transition metal ions with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile solution using the lithium-7 nucleus as a probe. J. Coord. Chem. 52, 139–149 (2000).

    Article 
    CAS 

    Google Scholar
     

  • MacFarlane, D. R. et al. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison, P. W. et al. Crown ethers: novel permeability enhancers for ocular drug delivery? Mol. Pharm. 14, 3528–3538 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gierczyk, B., Zalas, M. & Otłowski, T. High-energetic salts and metal complexes: comprehensive overview with a focus on use in homemade explosives (HME). Molecules 29, 5588 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betz, J. et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).

    Article 

    Google Scholar
     

  • Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016).

    Article 

    Google Scholar
     

  • Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anuphappharadorn, S., Sukchai, S., Sirisamphanwong, C. & Ketjoy, N. Comparison the economic analysis of the battery between lithium-ion and lead-acid in PV stand-alone application. Energy Procedia 56, 352–358 (2014).

    Article 

    Google Scholar
     

  • Logan, M. W. et al. UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries. J. Am. Chem. Soc. 8, 8485–8495 (2020).

    CAS 

    Google Scholar
     

  • Zhang, J. et al. “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meddings, N. et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J. Power Sources 480, 228742 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borodin, O. et al. Insights into the structure and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl)imide salts in ionic liquids. J. Phys. Chem. C. 122, 20108–20121 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Glaser, R., Borodin, O., Johnson, B., Jhulki, S. & Yushin, G. Minimizing long-chain polysulfide formation in Li-S batteries by using localized low concentration highly fluorinated electrolytes. J. Electrochem. Soc. 168, 090543 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Murata, J. et al. Vapor pressures of hydrofluoroethers. J. Chem. Eng. Data 47, 911–915 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Gaussian 16 Rev. C.01. (Gaussian, 2016).

  • Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3, 1986–2000 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Steinrück, H.-G. et al. Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy Environ. Sci. 13, 4312–4321 (2020).

    Article 

    Google Scholar
     

  • Nakayama, Y. Nonlinear dielectric decrement of electrolyte solutions: an effective medium approach. J. Colloid Interface Sci. 646, 354–360 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763–1776 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tissandier, M. D. et al. The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102, 7787–7794 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kelly, C. P., Cramer, C. J. & Truhlar, D. G. Aqueous solvation free energies of ions and ion–water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 110, 16066–16081 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greg, L., Paolo, T., and Brian, K. rdkit/rdkit: 2022_09_3 (Q3 2022) Release (Release_2022_09_3). Zenodo (2022).



  • Source link

    aqueousnonaqueous Batteries biphasic electrolyte engineered highpotential Liionophore lithiumbased nanoclusters Solutions
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Big milestone for the future of quantum computing.

    July 18, 2025

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    eSIM tech flaw exposes smartphones to serious hacking risks

    July 18, 2025

    Solution Validation Services Matter More Than Ever Before

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Big milestone for the future of quantum computing.

    July 18, 2025

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.