Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Inside the ‘Let’s Break It Down’ Series for Network Newbies

    October 13, 2025

    SVS Engineers: Who are the people that test-drive your network?

    October 12, 2025

    macOS Sequoia (version 15) is now available for your Mac with some big upgrades

    October 12, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Low-iridium stabilized ruthenium oxide anode catalyst for durable proton-exchange membrane water electrolysis
    Nanotechnology

    Low-iridium stabilized ruthenium oxide anode catalyst for durable proton-exchange membrane water electrolysis

    big tee tech hubBy big tee tech hubOctober 9, 20250418 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Low-iridium stabilized ruthenium oxide anode catalyst for durable proton-exchange membrane water electrolysis
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Kovač, A., Paranos, M. & Marciuš, D. Hydrogen in energy transition: a review. Int. J. Hydrog. Energy 46, 10016–10035 (2021).

    Article 

    Google Scholar
     

  • Johnson, N. et al. Realistic roles for hydrogen in the future energy transition. Nat. Rev. Clean. Technol. 1, 351–371 (2025).

    Article 

    Google Scholar
     

  • Horri, B. A. & Ozcan, H. Green hydrogen production by water electrolysis: current status and challenges. Curr. Opin. Green Sustain. Chem. 47, 100932 (2024).

    Article 

    Google Scholar
     

  • Tüysüz, H. Alkaline water electrolysis for green hydrogen production. Acc. Chem. Res. 57, 558–567 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, R.-T. et al. Recent advances in proton exchange membrane water electrolysis. Chem. Soc. Rev. 52, 5652–5683 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • IRENA Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 °C Climate Goal (IRENA, 2020).

  • Chen, Y. et al. Key components and design strategy for a proton exchange membrane water electrolyzer. Small Struct. 4, 2200130 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. & Feng, L. Recent advances and perspectives of Ir-based anode catalysts in PEM water electrolysis. Energy Adv. 3, 14–29 (2024).

    Article 

    Google Scholar
     

  • PGM management. Johnson Matthey (2025).

  • Minke, C., Suermann, M., Bensmann, B. & Hanke-Rauschenbach, R. Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?. Int. J. Hydrog. Energy 46, 23581–23590 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Clapp, M., Zalitis, C. M. & Ryan, M. Perspectives on current and future iridium demand and iridium oxide catalysts for PEM water electrolysis. Catal. Today 420, 114140 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Riedmayer, R., Paren, B. A., Schofield, L., Shao-Horn, Y. & Mallapragada, D. Proton exchange membrane electrolysis performance targets for achieving 2050 expansion goals constrained by iridium supply. Energy Fuels 37, 8614–8623 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis. Angew. Chem. 135, e202216645 (2023).

    Article 

    Google Scholar
     

  • Hou, L. et al. Strategies for the design of ruthenium-based electrocatalysts toward acidic oxygen evolution reaction. EES Catal. 1, 619–644 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2023.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hrbek, T., Kúš, P., Kosto, Y., Rodríguez, M. G. & Matolínová, I. Magnetron-sputtered thin-film catalyst with low-Ir-Ru content for water electrolysis: long-term stability and degradation analysis. J. Power Sources 556, 232375 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, J., Zhang, H., Chen, G. & Zhang, Y. Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis. Electrochim. Acta 54, 6250–6256 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Huynh, T. B. N. et al. Ir–Ru electrocatalysts embedded in N-doped carbon matrix for proton exchange membrane water electrolysis. Adv. Funct. Mater. 33, 2301999 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Y. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 143, 6482–6490 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo, J. et al. Mn-dopant differentiating the Ru and Ir oxidation states in catalytic oxides toward durable oxygen evolution reaction in acidic electrolyte. Small Methods 6, 2101236 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, W. et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium–iridium oxide. Nat. Commun. 14, 5365 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantò, F., Siracusano, S., Briguglio, N. & Aricò, A. S. Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density. Appl. Energy 279, 115809 (2020).

    Article 

    Google Scholar
     

  • Siracusano, S. et al. New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis. Nano Energy 40, 618–632 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tao, L. et al. Mass-efficient catalyst layer of hierarchical sub-nanosheets on nanowire for practical proton exchange membrane electrolyzer. Joule 8, 450–460 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Electrolyzer MEA – 3 Layer. FUELCELL Store (2025).

  • Chen, F.-Y., Wu, Z.-Y., Adler, Z. & Wang, H. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 5, 1704–1731 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Escudero-Escribano, M. et al. Importance of surface IrOx in stabilizing RuO2 for oxygen evolution. J. Phys. Chem. B 122, 947–955 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasian, O. et al. On the origin of the improved ruthenium stability in RuO2–IrO2 mixed oxides. J. Electrochem. Soc. 163, F3099–F3104 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Escalera-López, D. et al. Phase- and surface composition-dependent electrochemical stability of ir-ru nanoparticles during oxygen evolution reaction. ACS Catal. 11, 9300–9316 (2021).

    Article 

    Google Scholar
     

  • Zagalskaya, A. & Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 10, 3650–3657 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klyukin, K., Zagalskaya, A. & Alexandrov, V. Role of dissolution intermediates in promoting oxygen evolution reaction at RuO2(110) surface. J. Phys. Chem. C 123, 22151–22157 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cherevko, S. et al. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014).

    Article 
    CAS 

    Google Scholar
     

  • She, L. et al. On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 32, 2108465 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Park, W. & Chung, D. Y. Activity–stability relationships in oxygen evolution reaction. ACS Mater. Au 5, 1–10 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S. S. & Lim, H. Recent advances in hydrogen production through proton exchange membrane water electrolysis—a review. Sustain. Energy Fuels 7, 3560–3583 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kuhnert, E., Hacker, V. & Bodner, M. A review of accelerated stress tests for enhancing MEA durability in PEM water electrolysis cells. Int. J. Energy Res. 2023, 1–23 (2023).

    Article 

    Google Scholar
     

  • Jin, H. et al. Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat. Commun. 14, 354 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, H. & Jung, W. Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 9, 15506–15521 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Technical targets for proton exchange membrane electrolysis. US Department of Energy (2022).

  • Kong, S. et al. Acid-stable manganese oxides for proton exchange membrane water electrolysis. Nat. Catal. 7, 252–261 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ram, R. et al. Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 384, 1373–1380 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chong, L. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380, 609–616 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, S. et al. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13, 2294 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, S. et al. Nonprecious high-entropy chalcogenide glasses-based electrocatalysts for efficient and stable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Adv. Energy Mater. 13, 2301420 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, A. et al. Atomically dispersed hexavalent iridium oxide from MnO2 reduction for oxygen evolution catalysis. Science 384, 666–670 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flores, R. A. et al. Active learning accelerated discovery of stable iridium oxide polymorphs for the oxygen evolution reaction. Chem. Mater. 32, 5854–5863 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nong, H. N. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1, 841–851 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, W. H. et al. High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nat. Commun. 12, 4271 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Z. et al. Confined Ir single sites with triggered lattice oxygen redox: toward boosted and sustained water oxidation catalysis. Joule 5, 2164–2176 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 9, eadi8025 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. & Feng, Z. Pitfalls in X-ray absorption spectroscopy analysis and interpretation: a practical guide for general users. Curr. Opin. Electrochem. 30, 100803 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Laha, S. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 9, 1803795 (2019).

    Article 

    Google Scholar
     

  • Liu, H. et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule 7, 558–573 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article 
    CAS 

    Google Scholar
     

  • Leshchev, D. et al. The Inner Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for materials research. J. Synchrotron Radiat. 29, 1095–1106 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. et al. Chromium–ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 10, 162 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    anode catalyst durable electrolysis Lowiridium membrane oxide protonexchange ruthenium stabilized water
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    A record-breaking anisotropic van der Waals crystal? – Physics World

    October 12, 2025

    Eco-Friendly Nanoparticles for Water Purification Solutions

    October 12, 2025

    Peptide nanotubes show promise for overcoming chemotherapy resistance

    October 11, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Inside the ‘Let’s Break It Down’ Series for Network Newbies

    October 13, 2025

    SVS Engineers: Who are the people that test-drive your network?

    October 12, 2025

    macOS Sequoia (version 15) is now available for your Mac with some big upgrades

    October 12, 2025

    Building a real-time ICU patient analytics pipeline with AWS Lambda event source mapping

    October 12, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Inside the ‘Let’s Break It Down’ Series for Network Newbies

    October 13, 2025

    SVS Engineers: Who are the people that test-drive your network?

    October 12, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.