Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Mozilla Says It’s Finally Done With Two-Faced Onerep – Krebs on Security

    November 23, 2025

    Trump administration might not fight state AI regulations after all

    November 23, 2025

    All-optical modulation with single photons using an electron avalanche

    November 23, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes
    Nanotechnology

    Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes

    big tee tech hubBy big tee tech hubJune 23, 2025007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article 

    Google Scholar
     

  • Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019).

    Article 

    Google Scholar
     

  • Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Methods: Fundamentals and Applications (Wiley, 2022).

  • Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Hayre, R., Cha, S.-W., Colella, W. & Prinz, F. B. Fuel Cell Fundamentals (Wiley, 2016).

  • Hu, Y. et al. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fleischmann, S. et al. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy 7, 222–228 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Segalini, J., Daffos, B., Taberna, P. L., Gogotsi, Y. & Simon, P. Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim. Acta 55, 7489–7494 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

    Article 

    Google Scholar
     

  • Shao, H., Wu, Y. C., Lin, Z., Taberna, P. L. & Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 5, 787–808 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Structural disorder determines capacitance in nanoporous carbons. Science 384, 321–325 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newman, J. S. & Tobias, C. W. Theoretical analysis of current distribution in porous electrodes. J. Electrochem. Soc. 109, 1183 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Newman, J. & Tiedemann, W. Porous‐electrode theory with battery applications. AlChE J. 21, 25–41 (2004).

    Article 

    Google Scholar
     

  • Dunn, D. & Newman, J. Predictions of specific energies and specific powers of double-layer capacitors using a simplified model. J. Electrochem. Soc. 147, 820 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klemen, Z. et al. Derivation of transmission line model from the concentrated solution theory (CST) for porous electrodes. J. Electrochem. Soc. 168, 070543 (2021).

    Article 

    Google Scholar
     

  • Meddings, N. et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J. Power Sources 480, 228742 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mei, B. A. et al. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122, 194–206 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2018).

    Article 

    Google Scholar
     

  • Gupta, A., Zuk, P. J. & Stone, H. A. Charging dynamics of overlapping double layers in a cylindrical nanopore. Phys. Rev. Lett. 125, 076001 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilon, L., Wang, H. & d’Entremont, A. Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors. J. Electrochem. Soc. 162, A5158 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Biesheuvel, P. M. & Bazant, M. Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E 81, 031502 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Y., Lian, C., Berrueta, M. U., Liu, H. & van Roij, R. Microscopic model for cyclic voltammetry of porous electrodes. Phys. Rev. Lett. 128, 206001 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirzadeh, M., Gibou, F. & Squires, T. M. Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism. Phys. Rev. Lett. 113, 097701 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dydek, E. V. et al. Overlimiting current in a microchannel. Phys. Rev. Lett. 107, 118301 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Levie, D. R. On porous electrodes in electrolyte solutions—IV. Electrochim. Acta 9, 1231–1245 (1964).

    Article 

    Google Scholar
     

  • Li, P. et al. A review of compact carbon design for supercapacitors with high volumetric performance. Small 17, e2007548 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shao, Y. et al. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 5, 160–168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dou, Q. & Park, H. S. Perspective on high‐energy carbon‐based supercapacitors. Energy Environ. Sci. 3, 286–305 (2020).

    CAS 

    Google Scholar
     

  • Lukatskaya, M. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X. et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat. Commun. 11, 2079 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Gradient design for high-energy and high-power batteries. Adv. Mater. 34, e2202780 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Reducing the charge carrier transport barrier in functionally layer-graded electrodes. Angew. Chem. Int. Ed. 56, 14847–14852 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ramadesigan, V., Methekar, R. N., Latinwo, F., Braatz, R. D. & Subramanian, V. R. Optimal porosity distribution for minimized ohmic drop across a porous electrode. J. Electrochem. Soc. 157, A1328–A1334 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kilic, M. S., Bazant, M. Z. & Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75, 021503 (2007).

    Article 

    Google Scholar
     

  • Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Surface diffusion enhanced ion transport through two-dimensional nanochannels. Sci. Adv. 9, eadi8493 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. New structural insights into densely assembled reduced graphene oxide membranes. Adv. Funct. Mater. 32, 2201535 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kovtyukhova, N. I. et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, C. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Ion-specific nanoconfinement effect in multilayered graphene membranes: a combined nuclear magnetic resonance and computational study. Nano Lett. 23, 5555–5561 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    carbonbased Dynamics electrodes electrosorbed fastcharging ions Mesoscale nanoporous
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    All-optical modulation with single photons using an electron avalanche

    November 23, 2025

    Quantum Magazine Issue 2

    November 22, 2025

    Flexible electrodes for the future of light detection – Physics World

    November 21, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Mozilla Says It’s Finally Done With Two-Faced Onerep – Krebs on Security

    November 23, 2025

    Trump administration might not fight state AI regulations after all

    November 23, 2025

    All-optical modulation with single photons using an electron avalanche

    November 23, 2025

    Starting today, Full Screen Experience for Windows 11 PCs is available for Xbox Insiders!

    November 23, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Mozilla Says It’s Finally Done With Two-Faced Onerep – Krebs on Security

    November 23, 2025

    Trump administration might not fight state AI regulations after all

    November 23, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.