Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Nanoengineering of non-aqueous liquid electrolyte solutions for future lithium metal batteries

    February 19, 2026

    The Download: Autonomous narco submarines, and virtue signaling chatbots

    February 19, 2026

    How to design reliable, resilient, and recoverable workloads on Azure

    February 19, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Nanoengineering of non-aqueous liquid electrolyte solutions for future lithium metal batteries
    Nanotechnology

    Nanoengineering of non-aqueous liquid electrolyte solutions for future lithium metal batteries

    big tee tech hubBy big tee tech hubFebruary 19, 20260029 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Nanoengineering of non-aqueous liquid electrolyte solutions for future lithium metal batteries
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Horstmann, B. et al. Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy Environ. Sci. 14, 5289–5314 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brandt, K. & Laman, F. C. Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries. J. Power Sources 25, 265–276 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C., Wang, X. & Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jagger, B. & Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023).

    Article 
    CAS 

    Google Scholar
     

  • He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article 

    Google Scholar
     

  • Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Boyle, D. T. et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144, 20717–20725 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giffin, G. A. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13, 5250 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022). Systematic design of bi-ethers to optimize the thermodynamic and kinetic properties of liquid electrolytes.

    Article 
    CAS 

    Google Scholar
     

  • Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, I. R. et al. Asymmetric ether solvents for high-rate lithium metal batteries. Nat. Energy 10, 365–379 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081 (2023). Single-solvent mono-ether-based electrolyte enabling efficient Li stripping/plating at high current densities.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W., Chen, A., He, P. & Zhou, H. Advancing lithium metal electrode beyond 99.9% coulombic efficiency via super-saturated electrolyte with compressed solvation structure. Nat. Commun. 16, 4229 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, K. Electrolytes, Interfaces and Interphases (Royal Society of Chemistry, 2023).

  • Zhou, P., Xiang, Y. & Liu, K. Understanding and applying the donor number of electrolytes in lithium metal batteries. Energy Environ. Sci. 17, 8057–8077 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Mater. 11, 2306–2309 (2018).

    CAS 

    Google Scholar
     

  • Xu, K., Ding, S. P. & Jow, T. R. Toward reliable values of electrochemical stability limits for electrolytes. J. Electrochem. Soc. 146, 4172–4178 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Sethurajan, A. K., Krachkovskiy, S. A., Halalay, I. C., Goward, G. R. & Protas, B. Accurate characterization of ion transport properties in binary symmetric electrolytes using in situ NMR imaging and inverse modeling. J. Phys. Chem. B 119, 12238–12248 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, T. & Monroe, C. W. Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate. Electrochim. Acta 332, 135085 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, A. A., Hou, T., Karanjavala, M. & Monroe, C. W. Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes. Electrochim. Acta 358, 136688 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Diederichsen, K. M., McShane, E. J. & McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2, 2563–2575 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lorenz, M. et al. Local volume conservation in concentrated electrolytes is governing charge transport in electric fields. J. Phys. Chem. Lett. 13, 8761–8767 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schammer, M., Horstmann, B. & Latz, A. Theory of transport in highly concentrated electrolytes. J. Electrochem. Soc. 168, 026511 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zugmann, S. et al. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 56, 3926–3933 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Petrowsky, M., Frech, R., Suarez, S. N., Jayakody, J. R. P. & Greenbaum, S. Investigation of fundamental transport properties and thermodynamics in diglyme−salt solutions. J. Phys. Chem. B 110, 23012–23021 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwabi, D. G. et al. Experimental and computational analysis of the solvent-dependent O2/Li+–O2− redox couple: standard potentials, coupling strength, and implications for lithium–oxygen batteries. Angew. Chem. Int. Ed. 55, 3129–3134 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Leverick, G. & Shao-Horn, Y. Controlling electrolyte properties and redox reactions using solvation and implications in battery functions: a mini-review. Adv. Energy Mater. 13, 2204094 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q., McDowell, M. T. & Qi, Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145, 2473–2484 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angarita-Gomez, S. & Balbuena, P. B. Solvation vs. surface charge transfer: an interfacial chemistry game drives cation motion. Chem. Commun. 57, 6189–6192 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camacho-Forero, L. E., Smith, T. W. & Balbuena, P. B. Effects of high and low salt concentration in electrolytes at lithium-metal anode surfaces. J. Phys. Chem. C 121, 182–194 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sayah, S. et al. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy 98, 107336 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dokko, K. et al. Direct evidence for Li ion hopping conduction in highly concentrated sulfolane-based liquid electrolytes. J. Phys. Chem. B 122, 10736–10745 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raccichini, R., Dibden, J. W., Brew, A., Owen, J. R. & García-Aráez, N. Ion speciation and transport properties of LiTFSI in 1,3-dioxolane solutions: a case study for Li–S battery applications. J. Phys. Chem. B 122, 267–274 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y.-X. et al. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J. Power Sources 309, 221–230 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Effect of LiFSI concentrations to form thickness- and modulus-controlled SEI layers on lithium metal anodes. J. Phys. Chem. C 122, 9825–9834 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. & Qi, Y. Transferable self-consistent charge density functional tight-binding parameters for Li-metal and Li-ions in inorganic compounds and organic solvents. J. Phys. Chem. C 122, 10755–10764 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Soto, F. A., Ma, Y., Martinez De La Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Formation and growth mechanisms of solid–electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Single, F., Latz, A. & Horstmann, B. Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem 11, 1950–1955 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Von Kolzenberg, L., Latz, A. & Horstmann, B. Solid–electrolyte interphase during battery cycling: theory of growth regimes. ChemSusChem 13, 3901–3910 (2020).

    Article 

    Google Scholar
     

  • Single, F., Horstmann, B. & Latz, A. Dynamics and morphology of solid electrolyte interphase (SEI). Phys. Chem. Chem. Phys. 18, 17810–17814 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Single, F., Horstmann, B. & Latz, A. Revealing SEI morphology: in-depth analysis of a modeling approach. J. Electrochem. Soc. 164, E3132–E3145 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Harris, O. C., Lin, Y., Qi, Y., Leung, K. & Tang, M. H. How transition metals enable electron transfer through the SEI: part I. Experiments and Butler–Volmer modeling. J. Electrochem. Soc. 167, 013502 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. The effect of removing the native passivation film on the electrochemical performance of lithium metal electrodes. J. Power Sources 520, 230817 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kühn, S. P. et al. Back to the basics: advanced understanding of the as-defined solid electrolyte interphase on lithium metal electrodes. J. Power Sources 549, 232118 (2022).

    Article 

    Google Scholar
     

  • Otto, S.-K. et al. Storage of lithium metal: the role of the native passivation layer for the anode interface resistance in solid state batteries. ACS Appl. Energy Mater. 4, 12798–12807 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, J. S. et al. Thermodynamics, adhesion, and wetting at Li/Cu(-oxide) interfaces: relevance for anode-free lithium-metal batteries. ACS Appl. Mater. Interfaces 16, 18790–18799 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aravindan, V., Gnanaraj, J., Madhavi, S. & Liu, H. Lithium-ion conducting electrolyte salts for lithium batteries. Chem. Eur. J. 17, 14326–14346 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, R. W. et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog. Solid State Chem. 42, 65–84 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yeddala, M., Rynearson, L. & Lucht, B. L. Modification of carbonate electrolytes for lithium metal electrodes. ACS Energy Lett. 8, 4782–4793 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shin, W. & Manthiram, A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. 134, e202115909 (2022).

    Article 

    Google Scholar
     

  • Kwon, Y. et al. Elucidating the role of cathode identity: voltage-dependent reversibility of anode-free batteries. Chem 10, 3159–3183 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lei, Y. et al. Recent advances in separator design for lithium metal batteries without dendrite formation: implications for electric vehicles. eTransportation 20, 100330 (2024).

    Article 

    Google Scholar
     

  • Ishikawa, M., Tasaka, Y., Yoshimoto, N. & Morita, M. Optimization of physicochemical characteristics of a lithium anode interface for high-efficiency cycling: an effect of electrolyte temperature. J. Power Sources 97/98, 262–264 (2001).

    Article 

    Google Scholar
     

  • Wang, J. et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4, 664–670 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, S., Sheng, L., Wang, L., Piao, N. & He, X. Thickness variation of lithium metal anode with cycling. J. Power Sources 476, 228749 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McBrayer, J. D., Apblett, C. A., Harrison, K. L., Fenton, K. R. & Minteer, S. D. Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries. Nanotechnology 32, 502005 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, S. et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 83, 105847 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shen, X. et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10, 1903645 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Werres, M. et al. Origin of heterogeneous stripping of lithium in liquid electrolytes. ACS Nano 17, 10218–10228 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. et al. Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5, 1860–1872 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat. Commun. 9, 1339 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving long-life dendrite-free Li metal anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 31, 2007434 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Theoretical calculation study on the electrochemical properties of lithium halide-based artificial SEI films for lithium metal anodes. Surf. Interfaces 44, 103768 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shi, S. et al. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, P. & Harris, S. J. Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011). Investigation of Li+ transport in the SEI via isotope exchange experiments.

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Direct and in situ examination of Li+ transport kinetics in an isotope-labeled solid–electrolyte interphase. Proc. Natl Acad. Sci. USA 122, e2514652122 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das Goswami, B. R., Jabbari, V., Shahbazian-Yassar, R., Mashayek, F. & Yurkiv, V. Unraveling ion diffusion pathways and energetics in polycrystalline SEI of lithium-based batteries: combined cryo-HRTEM and DFT study. J. Phys. Chem. C 127, 21971–21979 (2023).

    Article 

    Google Scholar
     

  • Soto, F. A., Marzouk, A., El-Mellouhi, F. & Balbuena, P. B. Understanding ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: insights from first-principles calculations. Chem. Mater. 30, 3315–3322 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Direct in situ measurements of electrical properties of solid-electrolyte interphase on lithium metal anodes. Nat. Energy 8, 1345–1354 (2023). Experimental evidence of the electrical semiconducting properties of the SEI.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benitez, L. & Seminario, J. M. Electron transport and electrolyte reduction in the solid-electrolyte interphase of rechargeable lithium ion batteries with silicon anodes. J. Phys. Chem. C 120, 17978–17988 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Derosa, P. A. & Seminario, J. M. Electron transport through single molecules: scattering treatment using density functional and Green function theories. J. Phys. Chem. B 105, 471–481 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Köbbing, L., Latz, A. & Horstmann, B. Growth of the solid-electrolyte interphase: electron diffusion versus solvent diffusion. J. Power Sources 561, 232651 (2023).

    Article 

    Google Scholar
     

  • Feng, M., Pan, J. & Qi, Y. Impact of electronic properties of grain boundaries on the solid electrolyte interphases (SEIs) in Li-ion batteries. J. Phys. Chem. C 125, 15821–15829 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steiger, J., Kramer, D. & Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112–119 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by cryogenic transmission electron microscopy. ACS Nano 14, 8766–8775 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyle, D. T. et al. Resolving current-dependent regimes of electroplating mechanisms for fast charging lithium metal anodes. Nano Lett. 22, 8224–8232 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article 

    Google Scholar
     

  • Dhattarwal, H. S., Kuo, J.-L. & Kashyap, H. K. Mechanistic insight on the stability of ether and fluorinated ether solvent-based lithium bis(fluoromethanesulfonyl) electrolytes near Li metal surface. J. Phys. Chem. C 126, 8953–8963 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Perez-Beltran, S., Kuai, D. & Balbuena, P. B. SEI formation and lithium-ion electrodeposition dynamics in lithium metal batteries via first-principles kinetic Monte Carlo modeling. ACS Energy Lett. 9, 5268–5278 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, Y. et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries. Adv. Mater. 33, 2102134 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, H. et al. Beyond LiF: tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries. ACS Nano 18, 1969–1981 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hobold, G. M., Wang, C., Steinberg, K., Li, Y. & Gallant, B. M. High lithium oxide prevalence in the lithium solid–electrolyte interphase for high Coulombic efficiency. Nat. Energy 9, 580–591 (2024). Correlation of Li2O prevalence in the SEI and the CE in lithium metal batteries.

    Article 
    CAS 

    Google Scholar
     

  • Gao, K., Sun, L., Wang, K. & Zhang, Y. Non-aqueous liquid electrolytes in lithium metal battery: components and modification. Mater. Today Energy 37, 101413 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Borodin, O., Self, J., Persson, K. A., Wang, C. & Xu, K. Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, G. et al. Perspective on high-concentration electrolytes for lithium metal batteries. Small Struct. 2, 2000122 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ren, X. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018). Introduction of LHCEs as promising electrolyte concept for lithium metal batteries.

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3, 315–321 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Efaw, C. M. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, A., Schulze, M. C. & Colclasure, A. Micelle-like bulk structure of localized high-concentration electrolytes. Joule 8, 10–12 (2024).

    Article 

    Google Scholar
     

  • Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Review—Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Design of localized high-concentration electrolytes via donor number. ACS Energy Lett. 8, 1723–1734 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ren, F. et al. Solvent–diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14, 4211–4219 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv. Energy Mater. 10, 2000368 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jia, H. et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater. 9, 1900784 (2019).

    Article 

    Google Scholar
     

  • Ahmed, R. A. et al. Enhanced electrochemical performance of disordered rocksalt cathodes in a localized high-concentration electrolyte. Adv. Energy Mater. 14, 2400722 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cao, X. et al. Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Mater. 34, 76–84 (2021).

    Article 

    Google Scholar
     

  • Cao, X. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc. Natl Acad. Sci. USA 118, e2020357118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez Beltran, S., Cao, X., Zhang, J.-G., El-Khoury, P. Z. & Balbuena, P. B. Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent–Li + interactions and Li + transport mechanism. J. Mater. Chem. A 9, 17459–17473 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Regulating electrolyte solvation structures via diluent–solvent interactions for safe high-voltage lithium metal batteries. Small 20, 2311812 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. Chem 9, 682–697 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. et al. An amphiphilic molecule-regulated core–shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. 62, e202218151 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes. Energy Environ. Sci. 16, 5108–5122 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tran, T. et al. Enhancing cycling stability of lithium metal batteries by a bifunctional fluorinated ether. Adv. Funct. Mater. 34, 2407012 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cao, N. et al. Designing ionic liquid electrolytes for a rigid and Li+-conductive solid electrolyte interface in high performance lithium metal batteries. Chem. Phys. Lett. 866, 141959 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hai, F. et al. A low-cost, fluorine-free localized highly concentrated electrolyte toward ultra-high loading lithium metal batteries. Adv. Energy Mater. 14, 2304253 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Z., Chen, A., Liao, J., Song, L. & Zhou, X. Recent advances in multifunctional generalized local high-concentration electrolytes for high-efficiency alkali metal batteries. Nano Energy 119, 109088 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Acetonitrile-based local high-concentration electrolytes for advanced lithium metal batteries. Adv. Mater. 36, 2404271 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jie, Y. et al. Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes. Nat. Energy 9, 987–998 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. C. et al. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Critical review of fluorinated electrolytes for high-performance lithium metal batteries. Adv. Funct. Mater. 33, 2300502 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wichmann, L. et al. Design of fluorine-free weakly coordinating electrolyte solvents with enhanced oxidative stability. Angew. Chem. Int. Ed. 64, e202506826 (2025).

  • Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte solutions for high-potential lithium-based batteries. Nat. Nanotechnol. 20, 798–806 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vu, M. C. et al. Low melting alkali-based molten salt electrolytes for solvent-free lithium-metal batteries. Matter 6, 4357–4375 (2023). Report of low melting FSI-based molten salt electrolyte with high oxidative stability, enabling high Coulombic efficiencies at high rates.

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. FSI-inspired solvent and ‘full fluorosulfonyl’ electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 13, 212–220 (2020). Introduction of full fluorosulfonyl electrolytes for lithium metal batteries.

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017). Report of liquefied gas electrolytes enabling efficient Li plating/stripping.

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3, 1986–2000 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, F. et al. A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li. Adv. Energy Mater. 9, 1803372 (2019).

    Article 

    Google Scholar
     

  • Kang, D. W., Moon, J., Choi, H.-Y., Shin, H.-C. & Kim, B. G. Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. J. Power Sources 490, 229504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stuckenberg, S. et al. Influence of LiNO3 on the lithium metal deposition behavior in carbonate-based liquid electrolytes and on the electrochemical performance in zero-excess lithium metal batteries. Small 20, 2305203 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Agostini, M., Scrosati, B. & Hassoun, J. An advanced lithium-ion sulfur battery for high energy storage. Adv. Energy Mater. 5, 1500481 (2015).

    Article 

    Google Scholar
     

  • Ma, Q. et al. Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem 3, 531–536 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Weintz, D., Kühn, S. P., Winter, M. & Cekic-Laskovic, I. Tailoring the preformed solid electrolyte interphase in lithium metal batteries: impact of fluoroethylene carbonate. ACS Appl. Mater. Interfaces 15, 53526–53532 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, T. et al. Tailoring fluorine-rich solid electrolyte interphase to boost high efficiency and long cycling stability of lithium metal batteries. Sci. China Chem. 66, 2121–2129 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ding, F. et al. Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism. J. Phys. Chem. C 118, 4043–4049 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article 

    Google Scholar
     

  • Single, F., Horstmann, B. & Latz, A. Theory of impedance spectroscopy for lithium batteries. J. Phys. Chem. C 123, 27327–27343 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Stolz, L., Winter, M. & Kasnatscheew, J. Practical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?. J. Solid State Electrochem. 29, 4181–4186 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Meddings, N. et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J. Power Sources 480, 228742 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meunier, V., Leal De Souza, M., Morcrette, M. & Grimaud, A. Design of workflows for crosstalk detection and lifetime deviation onset in Li-ion batteries. Joule 7, 42–56 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Meng, W. et al. The progress of in situ technology for lithium metal batteries. Mater. Chem. Front. 8, 700–714 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Scurtu, R.-G. et al. From small batteries to big claims. Nat. Nanotechnol. 20, 970–976 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy. Nano Lett. 20, 418–425 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Formation and impact of nanoscopic oriented phase domains in electrochemical crystalline electrodes. Nat. Mater. 22, 92–99 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ji, P., Lei, X. & Su, D. In situ transmission electron microscopy methods for lithium-ion batteries. Small Methods 8, 2301539 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Characterizing batteries by in situ electrochemical atomic force microscopy: a critical review. Adv. Energy Mater. 11, 2101518 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wolff, B. & Hausen, F. Mechanical evolution of solid electrolyte interphase on metallic lithium studied by in situ atomic force microscopy. J. Electrochem. Soc. 170, 010534 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tan, S. et al. Evolution and interplay of lithium metal interphase components revealed by experimental and theoretical studies. J. Am. Chem. Soc. 146, 11711–11718 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, C., Xu, F. & Song, T. Dual-layered interfacial evolution of lithium metal anode: SEI analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces 14, 20197–20207 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2, 1321–1326 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schmitz, R. et al. SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J. Power Sources 233, 110–114 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hope, M. A. et al. Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun. 11, 2224 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, Y.-C. et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Golozar, M. et al. In situ observation of solid electrolyte interphase evolution in a lithium metal battery. Commun. Chem. 2, 131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H., Shen, C., Huang, Y. & Liu, Z. Spontaneously formation of SEI layers on lithium metal from LiFSI/DME and LiTFSI/DME electrolytes. Appl. Surf. Sci. 537, 147983 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez Beltran, S. & Balbuena, P. B. SEI formation mechanisms and Li+ dissolution in lithium metal anodes: impact of the electrolyte composition and the electrolyte-to-anode ratio. J. Power Sources 551, 232203 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wagner-Henke, J. et al. Knowledge-driven design of solid-electrolyte interphases on lithium metal via multiscale modelling. Nat. Commun. 14, 6823 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pohlmann, S. Metrics and methods for moving from research to innovation in energy storage. Nat. Commun. 13, 1538 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benayad, A. et al. High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Adv. Energy Mater. 12, 2102678 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ward, L. et al. Principles of the Battery Data Genome. Joule 6, 2253–2271 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Qu, X. et al. The Electrolyte Genome project: a big data approach in battery materials discovery. Comput. Mater. Sci. 103, 56–67 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tagade, P. M. et al. Attribute driven inverse materials design using deep learning Bayesian framework. npj Comput. Mater. 5, 127 (2019).

    Article 

    Google Scholar
     

  • Barter, D. et al. Predictive stochastic analysis of massive filter-based electrochemical reaction networks. Digit. Discov. 2, 123–137 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y.-C. et al. Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145, 23764–23770 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, P. et al. Non-aqueous battery electrolytes: high-throughput experimentation and machine learning-aided optimization of ionic conductivity. J. Mater. Chem. A 12, 19123–19136 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dave, A. et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling. Nat. Commun. 13, 5454 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores, E. et al. Learning the laws of lithium-ion transport in electrolytes using symbolic regression. Digit. Discov. 1, 440–447 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, G. N. & Keyes, F. G. The potential of the lithium electrode. J. Am. Chem. Soc. 35, 340–344 (1913).

    Article 
    CAS 

    Google Scholar
     

  • Harris, W. S. Electrochemical Studies in Cyclic Esters. PhD thesis, Univ. California, Berkeley (1958). Demonstration of reversible electrochemical Li deposition and dissolution.

  • Greatbatch, W. et al. The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemakers. IEEE Trans. Biomed. Eng BME-18, 317–324 (1971).

    Article 

    Google Scholar
     

  • Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). Proposal of the SEI model.

    Article 
    CAS 

    Google Scholar
     

  • Scarr, R. F. Kinetics of the solid lithium electrode in propylene carbonate. J. Electrochem. Soc. 117, 295–298 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selim, R. & Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 121, 1457–1459 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Rauh, R. D. & Brummer, S. B. The effect of additives on lithium cycling in propylene carbonate. Electrochim. Acta 22, 75–83 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Koch, V. R. & Young, J. H. The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J. Electrochem. Soc. 125, 1371–1377 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Koch, V. R. & Young, J. H. 2-Methyltetrahydrofuran–lithium hexafluoroarsenate: a superior electrolyte for the secondary lithium electrode. Science 204, 499–501 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch, V. R., Goldman, J. L., Mattos, C. J. & Mulvaney, M. Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J. Electrochem. Soc. 129, 1–4 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and Coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y., Zhou, T., Mensi, M., Choi, J. W. & Coskun, A. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Developing diluted low-concentration electrolyte with a high anion-to-solvent ratio for high-voltage lithium metal batteries. J. Mater. Chem. A 12, 8236–8243 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Morita, M., Asai, Y., Yoshimoto, N. & Ishikawa, M. A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J. Chem. Soc. Faraday Trans. 94, 3451–3456 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Qian, K., Winans, R. E. & Li, T. Insights into the nanostructure, solvation, and dynamics of liquid electrolytes through small-angle X-ray scattering. Adv. Energy Mater. 11, 2002821 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Leifer, N., Aurbach, D. & Greenbaum, S. G. NMR studies of lithium and sodium battery electrolytes. Prog. Nucl. Magn. Reson. Spectrosc. 142/143, 1–54 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, T. et al. Applications of voltammetry in lithium ion battery research. J. Electrochem. Sci. Technol. 11, 14–25 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hess, S., Wohlfahrt-Mehrens, M. & Wachtler, M. Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J. Electrochem. Soc. 162, A3084–A3097 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hellweg, L., Beuse, T., Winter, M. & Börner, M. Influence of lithium metal deposition on thermal stability: combined DSC and morphology analysis of cyclic aged lithium metal batteries. J. Electrochem. Soc. 170, 040530 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Arbizzani, C., Gabrielli, G. & Mastragostino, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Power Sources 196, 4801–4805 (2011).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Batteries electrolyte Future Liquid Lithium metal Nanoengineering nonaqueous Solutions
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Rethinking how quantum phases change – Physics World

    February 19, 2026

    B.C. 2026 budget sends mixed signals regarding its economic future but keeps important programs for households

    February 18, 2026

    Explore PI’s Brochure on Motion Control & Piezo Solutions

    February 18, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Nanoengineering of non-aqueous liquid electrolyte solutions for future lithium metal batteries

    February 19, 2026

    The Download: Autonomous narco submarines, and virtue signaling chatbots

    February 19, 2026

    How to design reliable, resilient, and recoverable workloads on Azure

    February 19, 2026

    How safe are gpt-oss-safeguard models?

    February 19, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Nanoengineering of non-aqueous liquid electrolyte solutions for future lithium metal batteries

    February 19, 2026

    The Download: Autonomous narco submarines, and virtue signaling chatbots

    February 19, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.