Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    How to run RAG projects for better data analytics results

    October 13, 2025

    MacBook Air deal: Save 10% Apple’s slim M4 notebook

    October 13, 2025

    Part 1 – Energy as the Ultimate Bottleneck

    October 13, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Nanomedicine in cardiovascular and cerebrovascular diseases: targeted nanozyme therapies and their clinical potential and current challenges | Journal of Nanobiotechnology
    Nanotechnology

    Nanomedicine in cardiovascular and cerebrovascular diseases: targeted nanozyme therapies and their clinical potential and current challenges | Journal of Nanobiotechnology

    big tee tech hubBy big tee tech hubJuly 30, 20250148 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Nanomedicine in cardiovascular and cerebrovascular diseases: targeted nanozyme therapies and their clinical potential and current challenges | Journal of Nanobiotechnology
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Singh S, Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int J Biol Macromol. 2024;260(Pt 1):129374. https://doi.org/10.1016/j.ijbiomac.2024.129374.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 2019;48(14):3683–704. https://doi.org/10.1039/c8cs00718g.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao W, Wang Y, Zheng Y, Cai X. Prussian blue nanoparticle: from a photothermal conversion agent and a drug delivery system, to a bioactive drug. Acc Mater Res. 2024;5(6):687–98. https://doi.org/10.1021/accountsmr.3c00260.

    Article 
    CAS 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. https://doi.org/10.1186/s12951-018-0392-8.

    Article 
    CAS 

    Google Scholar
     

  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, et al. Nanozymes-recent development and biomedical applications. J Nanobiotechnol. 2022;20(1):92. https://doi.org/10.1186/s12951-022-01295-y.

    Article 
    CAS 

    Google Scholar
     

  • Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of Vanadia nanowires. Nat Commun. 2014;5(1). https://doi.org/10.1038/ncomms6301.

  • Jiang P, Zhang L, Liu X, Ye C, Zhu P, Tan T, et al. Tuning oxidant and antioxidant activities of ceria by anchoring copper single-site for antibacterial application. Nat Commun. 2024;15(1):1010. https://doi.org/10.1038/s41467-024-45255-6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang Z, Wu J, Zheng J-J, Shen X, Yan L, Wei H, et al. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat Commun. 2021;12(1):6866. https://doi.org/10.1038/s41467-021-27194-8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dong S, Li X, Pan Q, Wang K, Liu N, Yutao W, Zhang Y. Nanotechnology-based approaches for antibacterial therapy. Eur J Med Chem. 2024;279: 116798. https://doi.org/10.1016/j.ejmech.2024.116798. Epub 2024 Aug 27. PMID: 39270451.

  • Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun. 2020;11(1):2788. https://doi.org/10.1038/s41467-020-16544-7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and perspectives. Nanoscale. 2023;15(35):14284–300. https://doi.org/10.1039/d3nr03016d.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu H, Yang J, Zhong Y, Wang J, Cai J, Luo C, et al. Polydopamine-Pd nanozymes as potent ROS scavengers in combination with near-infrared irradiation for osteoarthritis treatment. iScience. 2023;26(5):106605. https://doi.org/10.1016/j.isci.2023.106605.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aldrich JL, Panicker A, Ovalle R Jr, Sharma B. Drug delivery strategies and nanozyme technologies to overcome limitations for targeting oxidative stress in osteoarthritis. Pharmaceuticals (Basel). 2023;16(7). https://doi.org/10.3390/ph16071044.

  • Zhang R, Yan X, Fan K. Nanozymes inspired by natural enzymes. Acc Mater Res. 2021;2(7):534–47. https://doi.org/10.1021/accountsmr.1c00074.

    Article 
    CAS 

    Google Scholar
     

  • Keum C, Hirschbiegel C-M, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical applications. Nano Converg. 2023;10(1):42. https://doi.org/10.1186/s40580-023-00390-6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Verrando P, Hsi BL, Yeh CJ, Pisani A, Serieys N, Ortonne JP. Monoclonal antibody GB3, a new probe for the study of human basement membranes and hemidesmosomes. Exp Cell Res. 1987;170(1):116–28. https://doi.org/10.1016/0014-4827(87)90121-2.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Niu X, Cheng N, Ruan X, Du D, Lin Y. Review—nanozyme-based immunosensors and immunoassays: recent developments and future trends. J Electrochem Soc. 2020;167(3):037508. https://doi.org/10.1149/2.0082003jes.

    Article 
    CAS 

    Google Scholar
     

  • Wang D, Jana D, Zhao Y. Metal-organic framework derived nanozymes in biomedicine. Acc Chem Res. 2020;53(7):1389–400. https://doi.org/10.1021/acs.accounts.0c00268.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano. 2021;15(2):2005–37. https://doi.org/10.1021/acsnano.0c06962.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang L, Zhang L, Deng H, Li H, Tang W, Guan L, et al. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nat Commun. 2021;12(1):2002. https://doi.org/10.1038/s41467-021-22286-x.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao L, Yan X, Nanozymes. Biomedical applications of enzymatic Fe3O4 nanoparticles from in vitro to in vivo. Adv Exp Med Biol. 2019;1174:291–312. https://doi.org/10.1007/978-981-13-9791-2_9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin LS, Song J, Song L. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew Chem Int Ed. 2018;57:4902–6.

    CAS 

    Google Scholar
     

  • Cao S, Fan J, Sun W, Li F, Li K, Tai X, et al. A novel Mn-Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chem Commun (Camb). 2019;55(86):12956–9. https://doi.org/10.1039/c9cc06040e.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu L-H, Wan Y, Qi C, He J, Li C, Yang C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv Mater. 2021;33(7):e2006892. https://doi.org/10.1002/adma.202006892.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang C, Wang H, Xu B, Liu H. Photo-responsive nanozymes: mechanism, activity regulation, and biomedical applications. View (Beijing). 2021;2(1):20200045. https://doi.org/10.1002/viw.20200045.

    Article 
    CAS 

    Google Scholar
     

  • Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug Chem. 2019;30(5):1273–96. https://doi.org/10.1021/acs.bioconjchem.9b00171.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cardiovascular diseases (CVDs). WHO [cited 2025 Mar 6, 2025]. http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

  • Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med. 2019;29(6):313–23. https://doi.org/10.1016/j.tcm.2018.10.010.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ciarambino T, Menna G, Sansone G, Giordano M, Cardiomyopathies. An overview. Int J Mol Sci. 2021;22(14):7722. https://doi.org/10.3390/ijms22147722.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 2019;25(38):4063–84. https://doi.org/10.2174/1381612825666190925163827.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Portegies MLP, Koudstaal PJ, Ikram MA. Cerebrovascular disease. Handb Clin Neurol. 2016;138:239–61. https://doi.org/10.1016/B978-0-12-802973-2.00014-8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salmela MB, Mortazavi S, Jagadeesan BD, Broderick DF, Burns J. ACR appropriateness Criteria(®) cerebrovascular disease. J Am Coll Radiol. 2017;14:S34–61.

    PubMed 

    Google Scholar
     

  • Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5(1):70. https://doi.org/10.1038/s41572-019-0118-8.

    Article 
    PubMed 

    Google Scholar
     

  • Mazzacane F, Mazzoleni V, Scola E, Mancini S, Lombardo I, Busto G, et al. Vessel wall magnetic resonance imaging in cerebrovascular diseases. Diagnostics (Basel). 2022;12(2):258. https://doi.org/10.3390/diagnostics12020258.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grosset L, Jouvent E. Cerebral small-vessel diseases: A look back from 1991 to today. Cerebrovasc Dis. 2022;51(2):131–7. https://doi.org/10.1159/000522213.

    Article 
    PubMed 

    Google Scholar
     

  • Song W, Zhao B, Wang C, Ozaki Y, Lu X. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B Mater Biol Med. 2019;7(6):850–75. https://doi.org/10.1039/c8tb02878h.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron. 2019;142(111495):111495. https://doi.org/10.1016/j.bios.2019.111495.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang X, Tu Q, Zhao B, An Y, Wang J-C, Liu W, et al. Effects of poly(L-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in cancer stem cells. Biomaterials. 2013;34(4):1155–69. https://doi.org/10.1016/j.biomaterials.2012.10.063.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan S, Zhao M, Ding L, Li H, Chen S. Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron. 2017;89(Pt 2):846–52. https://doi.org/10.1016/j.bios.2016.09.108.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Q, Li S, Liu Y, Zhang X, Tang Y, Chai H, et al. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens Actuators B Chem. 2020;305(127511):127511. https://doi.org/10.1016/j.snb.2019.127511.

    Article 
    CAS 

    Google Scholar
     

  • Zhang A, Pan S, Zhang Y, Chang J, Cheng J, Huang Z, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 2019;9(12):3443–58. https://doi.org/10.7150/thno.33266.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang A, Zhang Q, Alfranca G, Pan S, Huang Z, Cheng J, et al. GSH-triggered sequential catalysis for tumor imaging and eradication based on star-like au/pt enzyme carrier system. Nano Res. 2020;13(1):160–72. https://doi.org/10.1007/s12274-019-2591-5.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6(5):4001–12. https://doi.org/10.1021/nn300291r.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim MS, Lee J, Kim HS, Cho A, Shim KH. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv Funct Mater. 2020;30(1).

  • Xiong X, Huang Y, Lin C, Liu XY, Lin Y. Recent advances in nanoparticulate biomimetic catalysts for combating bacteria and biofilms. Nanoscale. 2019;11(46):22206–15. https://doi.org/10.1039/c9nr05054j.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chong Y, Liu Q, Ge C. Advances in Oxidase-MimickingNanozymes: classification, activity regulation and biomedical applications. Nano Today. 2021;37.

  • Zhao J, Cai X, Gao W, Zhang L, Zou D, Zheng Y, et al. Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl Mater Interfaces. 2018;10(31):26108–17. https://doi.org/10.1021/acsami.8b10345.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang Y, Ren J, Qu X, Nanozymes. Classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–412. https://doi.org/10.1021/acs.chemrev.8b00672.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen W, Li S, Wang J, Sun K, Si Y. Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale. 2019;11(34):15783–93. https://doi.org/10.1039/c9nr04771a.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, et al. Nanozyme applications in biology and medicine: an overview. Artif Cells Nanomed Biotechnol. 2017;45(6):1069–76. https://doi.org/10.1080/21691401.2017.1313268.

    Article 
    CAS 

    Google Scholar
     

  • Cai S, Yang R. In: Nanozymology, editor. Noble Metal-Based nanozymes. Singapore: Springer Singapore; 2020. pp. 331–65.

  • Zhang A, Guo W, Ke H, Zhang X, Zhang H, Huang C, et al. Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens Bioelectron. 2018;101:219–26. https://doi.org/10.1016/j.bios.2017.10.040.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tan F, Zhang Y, Wang J, Wei J, Cai Y, Qian X. An efficient method for dephosphorylation of phosphopeptides by cerium oxide. J Mass Spectrom. 2008;43(5):628–32. https://doi.org/10.1002/jms.1362.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Knott AB, Bossy-Wetzel E. Nitric oxide in health and disease of the nervous system. Antioxid Redox Signal. 2009;11(3):541–54. https://doi.org/10.1089/ars.2008.2234.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dowding JM, Dosani T, Kumar A, Seal S, Self WT. Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chem Commun (Camb). 2012;48(40):4896–8. https://doi.org/10.1039/c2cc30485f.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hang C, Moawad MS, Lin Z, Guo H, Xiong H, Zhang M, et al. Biosafe cerium oxide nanozymes protect human pluripotent stem cells and cardiomyocytes from oxidative stress. J Nanobiotechnol. 2024;22(1):132. https://doi.org/10.1186/s12951-024-02383-x.

    Article 
    CAS 

    Google Scholar
     

  • Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D. Dietary Fe(3)O(4) nanozymes prevent the injury of neurons and Blood-Brain barrier integrity from cerebral ischemic stroke. ACS Biomater Sci Eng. 2021;7:299–310.

    PubMed 
    CAS 

    Google Scholar
     

  • Jiang S, Cai G, Yang Z, Shi H, Zeng H, Ye Q, Hu Z, Wang Z. Biomimetic nanovesicles as a dual gene delivery system for the synergistic gene therapy of alzheimer’s disease. ACS Nano. 2024;18(18):11753–11768. https://doi.org/10.1186/s12987-019-0123-z. Epub 2024 Apr 22. PMID: 38649866.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren C, Li D, Zhou Q, Hu X. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an alzheimer’s disease model. Biomaterials. 2020;232(119752):119752. https://doi.org/10.1016/j.biomaterials.2019.119752.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Q, Yao H, Liu W, Ya B, Cheng H, Xing Z, et al. Microglia polarization in alzheimer’s disease: mechanisms and a potential therapeutic target. Front Aging Neurosci. 2021;13:772717. https://doi.org/10.3389/fnagi.2021.772717.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang S, Liu Y, Sun S, Wang J, Li Q, Yan R, et al. Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for brain trauma. Theranostics. 2021;11(6):2806–21. https://doi.org/10.7150/thno.51912.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mu X, Wang J, He H, Li Q, Yang B, Wang J, et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Sci Adv. 2021;7(46):eabk1210. https://doi.org/10.1126/sciadv.abk1210.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kaya D, Küçükada K, Alemdar N. Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric films. Carbohydr Polym. 2019;215:189–97. https://doi.org/10.1016/j.carbpol.2019.03.041.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang L, Zhu Q, Zhu J, Luo L, Pu S, Zhang W, et al. Portable colorimetric detection of mercury(II) based on a non-noble metal nanozyme with tunable activity. Inorg Chem. 2019;58(2):1638–46. https://doi.org/10.1021/acs.inorgchem.8b03193.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu Q, Wei C, Wang M. Transition-metal-based nanozymes: synthesis, mechanisms of therapeutic action, and applications in cancer treatment. ACS Nano. 2024;18(19):12049–95. https://doi.org/10.1021/acsnano.4c02265.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zare Y. Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data. Appl Clay Sci. 2015;115:61–6. https://doi.org/10.1016/j.clay.2015.07.021.

    Article 
    CAS 

    Google Scholar
     

  • Shamsabadi A, Haghighi T, Carvalho S, Frenette LC, Stevens MM. The nanozyme revolution: enhancing the performance of medical biosensing platforms. Adv Mater. 2024;36(10):e2300184. https://doi.org/10.1002/adma.202300184.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan L, Sun P, Huang Y, Xu Z, Lu X, Xi J, et al. One-pot synthesis of Fe/N-doped Hollow carbon nanospheres with multienzyme mimic activities against inflammation. ACS Appl Bio Mater. 2020;3(2):1147–57. https://doi.org/10.1021/acsabm.9b01079.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peng Y, He D, Ge X, Lu Y, Chai Y, Zhang Y, et al. Construction of heparin-based hydrogel incorporated with Cu5. 4O ultrasmall nanozymes for wound healing and inflammation Inhibition. Bioactive Mater. 2021;6(10):3109–24.

    CAS 

    Google Scholar
     

  • Garg B, Bisht T. Carbon nanodots as peroxidase nanozymes for biosensing. Molecules. 2016;21(12):1653. https://doi.org/10.3390/molecules21121653.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cui R, Han Z, Zhu J-J. Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chemistry. 2011;17(34):9377–84. https://doi.org/10.1002/chem.201100478.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou Y, Wei Y, Ren J, Qu X. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. Mater Horiz. 2020;7(12):3291–7. https://doi.org/10.1039/d0mh01535k.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Liu X, Chai H, Huang Y. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Analyt Chem. 2018;105:391–403. https://doi.org/10.1016/j.trac.2018.06.001.

    Article 
    CAS 

    Google Scholar
     

  • Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev. 2017;46(11):3242–85. https://doi.org/10.1039/c6cs00930a.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Q, Jiang J, Gao L. Nanozyme-based medicine for enzymatic therapy: progress and challenges. Biomed Mater. 2021;16(4):042002. https://doi.org/10.1088/1748-605X/abe7b4.

    Article 
    CAS 

    Google Scholar
     

  • Liang M, Yan X, Nanozymes. From new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200. https://doi.org/10.1021/acs.accounts.9b00140.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mishra S, Abdal-hay A, Rather SU, Tripathi RM, Shekh FA. Recent advances in silver nanozymes: concept, mechanism, and applications in detection. Adv Mater Interfaces. 2022;9(30):2200928. https://doi.org/10.1002/admi.202200928.

    Article 
    CAS 

    Google Scholar
     

  • Moradi Hasan-Abad A, Shabankare A, Atapour A, Hamidi GA, Salami Zavareh M, Sobhani-Nasab A. The application of peroxidase mimetic nanozymes in cancer diagnosis and therapy. Front Pharmacol. 2024;15:1339580. https://doi.org/10.3389/fphar.2024.1339580.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare Earth nanomaterial for biological applications. NPG Asia Mater. 2014;6(3):e90–90. https://doi.org/10.1038/am.2013.88.

    Article 
    CAS 

    Google Scholar
     

  • Liang Y-J, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: controlled synthesis, properties tuning and cancer theranostics. Nano Sel. 2021;2(2):216–50. https://doi.org/10.1002/nano.202000169.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Jiang H, Wang S, Shi W, He J, Liu H, et al. Fe3O4–MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Adv. 2014;4(86):45809–15. https://doi.org/10.1039/c4ra07327d.

    Article 
    CAS 

    Google Scholar
     

  • Ren X, Hu Q. Zhou graphene oxide quantum Dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv Sci. 2018;5(5).

  • Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H. Huang carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47(23):6695–7.

    CAS 

    Google Scholar
     

  • Ali SS, Hardt JI, Quick KL, Kim Han JS, Erlanger BF, Huang TT, et al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med. 2004;37(8):1191–202.

    PubMed 
    CAS 

    Google Scholar
     

  • Boutorine AS, Takasugi M, Hélène C, Tokuyama H, Isobe H, Nakamura E. Fullerene–oligonucleotide conjugates: photoinduced sequence-specific DNA cleavage. Angew Chem Int Ed Engl. 1995;33(23–24):2462–5. https://doi.org/10.1002/anie.199424621.

    Article 

    Google Scholar
     

  • Purich DL. Enzyme catalysis: a new definition accounting for noncovalent substrate- and product-like States. Trends Biochem Sci. 2001;26(7):417–21. https://doi.org/10.1016/s0968-0004(01)01880-1.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bilal M, Khaliq N, Ashraf M, Hussain N, Baqar Z, Zdarta J, et al. Enzyme mimic nanomaterials as nanozymes with catalytic attributes. Colloids Surf B Biointerfaces. 2023;221(112950):112950. https://doi.org/10.1016/j.colsurfb.2022.112950.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Demirsoy Z, Gulseren G. Self-assembled fullerene nanostructures for mimicking and Understanding of natural enzymes. ACS Appl Nano Mater. 2022;5(10):14285–95. https://doi.org/10.1021/acsanm.2c02194.

    Article 
    CAS 

    Google Scholar
     

  • Lewandowska H, Wójciuk K, Karczmarczyk U. Metal nanozymes: new horizons in cellular homeostasis regulation. Appl Sci (Basel). 2021;11(19):9019. https://doi.org/10.3390/app11199019.

    Article 
    CAS 

    Google Scholar
     

  • Zeng G, Duan M, Xu Y, Ge F, Wang W. Platinum (II)-doped graphitic carbon nitride with enhanced peroxidase-like activity for detection of glucose and H2O2. Spectrochim Acta Mol Biomol Spectrosc. 2020;241(118649):118649. https://doi.org/10.1016/j.saa.2020.118649.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, He X, Huang K, Cheng N. Nanozyme as a rising star for metabolic disease management. J Nanobiotechnol. 2024;22(1):226. https://doi.org/10.1186/s12951-024-02478-5.

    Article 

    Google Scholar
     

  • Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother. 2023;163(114833):114833. https://doi.org/10.1016/j.biopha.2023.114833.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao X, Zhang J, Gong Y, Yan L. The biomedical applications of nanozymes in orthopaedics based on regulating reactive oxygen species. J Nanobiotechnol. 2024;22(1):569. https://doi.org/10.1186/s12951-024-02844-3.

    Article 

    Google Scholar
     

  • Manoharan D, Wang L-C, Chen Y-C, Li W-P, Yeh C-S. Catalytic nanoparticles in biomedical applications: exploiting advanced nanozymes for therapeutics and diagnostics. Adv Healthc Mater. 2024;13(22):e2400746. https://doi.org/10.1002/adhm.202400746.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes: A radiant hope for the early diagnosis and effective treatment of breast and ovarian cancers. Int J Nanomed. 2024;19:5813–35. https://doi.org/10.2147/IJN.S460712.

    Article 

    Google Scholar
     

  • Liu J, Han X, Zhang T, Tian K, Li Z, Luo F. ROS scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol. 2023;16(1):116. https://doi.org/10.1186/s13045-023-01512-7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang S, Chen J, Lian M-L, Yang W-S, Chen X. An engineered, self-propelled nanozyme as reactive oxygen species scavenger. Chem Eng J. 2022;446(136794):136794. https://doi.org/10.1016/j.cej.2022.136794.

    Article 
    CAS 

    Google Scholar
     

  • Maddheshiya S, Nara S. Recent trends in composite nanozymes and their pro-oxidative role in therapeutics. Front Bioeng Biotechnol. 2022;10:880214. https://doi.org/10.3389/fbioe.2022.880214.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nashat N, Haider Z. Therapeutic applications of nanozymes and their role in cardiovascular disease. Int J Nanomater Nanotechnol Nanomed. 2021;7(1):9–18.


    Google Scholar
     

  • Li S, Wang L, Zhang X, Chai H, Huang Y. N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection Sens. Sens Actuators B: Chem. 2018;264:312–9.

    CAS 

    Google Scholar
     

  • Li Y, Li Y, Wang H, Liu R, Yb3+. Er3 + codoped cerium oxide upconversion nanoparticles enhanced the enzymelike catalytic activity and antioxidative activity for parkinson’s disease treatment. ACS Appl Mater Interfaces. 2021;13(12):13968–77. https://doi.org/10.1021/acsami.1c00157.

  • Li Z, Zhao Y, Huang H, Zhang C, Liu H, Wang Z et al. A Nanozyme-Immobilized hydrogel with endogenous ROS-Scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv Healthc Mater. 2022;11.

  • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7–8):466–72. https://doi.org/10.1016/j.exger.2010.01.003.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hu D, Li R, Li Y, Wang M, Wang L, Wang S, et al. Inflammation-targeted nanomedicines alleviate oxidative stress and reprogram macrophages polarization for myocardial infarction treatment. Adv Sci (Weinh). 2024;11(21):e2308910. https://doi.org/10.1002/advs.202308910.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434. https://doi.org/10.1039/d0cs01127d.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abdel-Mageed HM, Abd El Aziz AE, Abdel Raouf BM, Mohamed SA, Nada D. Antioxidant-biocompatible and stable catalase-based gelatin-alginate hydrogel scaffold with thermal wound healing capability: immobilization and delivery approach. 3 Biotech. 2022;12(3):73. https://doi.org/10.1007/s13205-022-03131-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, et al. Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Adv Funct Mater. 2021;31(31):2101804. https://doi.org/10.1002/adfm.202101804.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Wang X, Li X, Qiao S, Huang G, Hermann DM, et al. Correction to A co-doped Fe3O4 nanozyme shows enhanced reactive oxygen and nitrogen species scavenging activity and ameliorates the deleterious effects of ischemic stroke. ACS Appl Mater Interfaces. 2022;14(38):44015. https://doi.org/10.1021/acsami.2c12150.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Liu W, Wang X, Liu Y, Wei H. Nanozyme-enabled treatment of cardio- and cerebrovascular diseases. Small. 2023;19(13):e2204809. https://doi.org/10.1002/smll.202204809.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh N, Mugesh G. CeVO4 nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species. Angew Chem Int Ed Engl. 2019;58(23):7797–801. https://doi.org/10.1002/anie.201903427.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guan Y, Li M, Dong K, Gao N, Ren J, Zheng Y, et al. Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-β peptide. Biomaterials. 2016;98:92–102. https://doi.org/10.1016/j.biomaterials.2016.05.005.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Y-Q, Mao Y, Xu E, Jia H, Zhang S, Dawson VL, et al. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in parkinson’s disease. Nano Today. 2021;36(101027):101027. https://doi.org/10.1016/j.nantod.2020.101027.

    Article 
    CAS 

    Google Scholar
     

  • Tian R, Ma H, Ye W, Li Y, Wang S, Zhang Z, et al. Se-containing MOF coated dual‐Fe‐atom nanozymes with multi‐enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv Funct Mater. 2022;32(36):2204025. https://doi.org/10.1002/adfm.202204025.

    Article 
    CAS 

    Google Scholar
     

  • Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35. https://doi.org/10.1038/nature07201.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh S. Cerium oxide based nanozymes: redox phenomenon at biointerfaces. Biointerphases. 2016;11(4):04B202. https://doi.org/10.1116/1.4966535.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jin J, Li L, Zhang L, Luan Z, Xin S, Song K. Progress in the application of carbon dots-based nanozymes. Front Chem. 2021;9:748044. https://doi.org/10.3389/fchem.2021.748044.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M, et al. Platinum nanoparticles in biomedicine: preparation, anti-cancer activity, and drug delivery vehicles. Front Pharmacol. 2022;13:797804. https://doi.org/10.3389/fphar.2022.797804.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li DY, Hu XX, Tian ZR, Ning QW, Liu JQ, Yue Y, Yuan W, Meng B, Li JL, Zhang Y, PanZW, Zhuang YT, Lu YJ. eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice bypromoting nuclear translocation of transgelin/p53. Acta Pharmacol Sin. 2025;46(5):1236-1249. Epub 2025 Jan 24. PMID: 39856433; PMCID:PMC12032080. https://doi.org/10.1038/s41401-024-01467-6

  • Li X, Zhang Y, Ren X, Wang Y, Chen D, Li Q, et al. Ischemic microenvironment-responsive therapeutics for cardiovascular diseases. Adv Mater. 2021;33(52). https://doi.org/10.1002/adma.202105348.

  • Long M, Wang L, Kang L, Liu D, Long T, Ding H, et al. Prussian blue nanozyme featuring enhanced superoxide dismutase-like activity for myocardial ischemia reperfusion injury treatment. ACS Nano. 2025;19(4):4561–81. https://doi.org/10.1021/acsnano.4c14445.

  • Liu X, Chen B, Chen J, Wang X, Dai X, Li Y, et al. A cardiac-targeted nanozyme interrupts the inflammation-free radical cycle in myocardial infarction. Adv Mater. 2024;36(2):e2308477. https://doi.org/10.1002/adma.202308477.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Q, Liu Y, Dai X, Jiang W, Zhao H. Nanozymes regulate redox homeostasis in ROS-related inflammation. Front Chem. 2021;9:740607. https://doi.org/10.3389/fchem.2021.740607.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing J, Ma X, Yu Y, Xiao Y, Chen L, Yuan W, et al. A cardiac-targeting and anchoring bimetallic cluster nanozyme alleviates chemotherapy-induced cardiac ferroptosis and PANoptosis. Adv Sci (Weinh). 2025;12(1):e2405597. https://doi.org/10.1002/advs.202405597.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nakai M, Iwanaga Y, Sumita Y, Wada S, Hiramatsu H, Iihara K, et al. Associations among cardiovascular and cerebrovascular diseases: analysis of the nationwide claims-based JROAD-DPC dataset. PLoS ONE. 2022;17(3):e0264390. https://doi.org/10.1371/journal.pone.0264390.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu J, Wei Z, Wang X, Li X, Wang W. The risk of cardiovascular and cerebrovascular disease in overlap syndrome: a meta-analysis. J Clin Sleep Med. 2020;16(7):1199–207. https://doi.org/10.5664/jcsm.8466.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GBD 2017 Causes of Death Collaborators. Global, regional, and National age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1736–88. https://doi.org/10.1016/S0140-6736(18)32203-7.

    Article 

    Google Scholar
     

  • Wu Y, Xiong Y, Wang P, Liu R, Jia X, Kong Y, et al. Risk factors of cardiovascular and cerebrovascular diseases in young and middle-aged adults: A meta-analysis. Med (Baltim). 2022;101(48):e32082. https://doi.org/10.1097/MD.0000000000032082.

    Article 
    CAS 

    Google Scholar
     

  • Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: A compass for future health. J Am Coll Cardiol. 2022;80(25):2361–71. https://doi.org/10.1016/j.jacc.2022.11.005.

    Article 
    PubMed 

    Google Scholar
     

  • Achim A, Péter OÁ, Cocoi M, Serban A, Mot S, Dadarlat-Pop A, et al. Correlation between coronary artery disease with other arterial systems: similar, albeit separate, underlying pathophysiologic mechanisms. J Cardiovasc Dev Dis. 2023;10(5). https://doi.org/10.3390/jcdd10050210.

  • Patial S, Sharma A, Raj K, Shukla G, Atherosclerosis. Progression, Risk Factors, Diagnosis, Treatment, Probiotics and Synbiotics as a New Prophylactic Hope. The Microbe. 2024.

  • Gutierrez J, Bos D, Turan TN, Hoh B, Hilal S, Arenillas JF, et al. Pathology-based brain arterial disease phenotypes and their radiographic correlates. J Stroke Cerebrovasc Dis. 2024;33(6):107642. https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107642.

    Article 
    PubMed 

    Google Scholar
     

  • Silver FL, Norris JW, Lewis AJ, Hachinski VC. Early mortality following stroke: a prospective review. Stroke. 1984;15(3):492–6. https://doi.org/10.1161/01.str.15.3.492.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Adams RJ, Chimowitz MI, Alpert JS, Awad IA, Cerqueria MD, Fayad P, American Heart Association/American Stroke Association. Coronary risk evaluation in patients with transient ischemic attack and ischemic stroke: a scientific statement for healthcare professionals from the Stroke Council and the Council on Clinical Cardiology of the American Heart Association/American Stroke Association. Clinical Cardiology of the American Heart Association/American Stroke Association Stroke. 2003;34:2310–22.

  • Kajermo U, Ulvenstam A, Modica A, Jernberg T, Mooe T. Incidence, trends, and predictors of ischemic stroke 30 days after an acute myocardial infarction. Stroke. 2014;45(5):1324–30. https://doi.org/10.1161/STROKEAHA.113.001963.

    Article 
    PubMed 

    Google Scholar
     

  • Finsterer J, Stöllberger C. Neurological complications of cardiac disease (heart brain disorders). Minerva Med. 2016;107(1):14–25.

    PubMed 

    Google Scholar
     

  • He H, Han Q, Wang S, Long M, Zhang M, Li Y, et al. Design of a multifunctional nanozyme for resolving the Proinflammatory plaque microenvironment and attenuating atherosclerosis. ACS Nano. 2023;17(15):14555–71. https://doi.org/10.1021/acsnano.3c01420.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pham LM, Kim E-C, Ou W, Phung CD, Nguyen TT, Pham TT, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269(120677):120677. https://doi.org/10.1016/j.biomaterials.2021.120677.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiong H, Zhao Y, Xu Q, Xie X, Wu J, Hu B, et al. Biodegradable hollow-structured nanozymes modulate phenotypic polarization of macrophages and relieve hypoxia for treatment of osteoarthritis. Small. 2022;18(32):e2203240. https://doi.org/10.1002/smll.202203240.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao Y, Liu S, Zeng X, Guo Z, Chen D, Li S, et al. Reduction of reactive oxygen species accumulation using gadolinium-doped ceria for the alleviation of atherosclerosis. ACS Appl Mater Interfaces. 2023;15(8):10414–25. https://doi.org/10.1021/acsami.2c20492.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T.Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell deathmechanisms. Cancer Lett. 2024;591:216860. https://doi.org/10.1016/j.canlet.2024.216860. Epub 2024 Apr 6. PMID: 38583650.

  • Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017;120(11):1812–24. https://doi.org/10.1161/CIRCRESAHA.117.311082.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu S, Zhao K, Wang J, Liu N, Nie K, Qi L, et al. Recent advances of Tanshinone in regulating autophagy for medicinal research. Front Pharmacol. 2022;13:1059360. https://doi.org/10.3389/fphar.2022.1059360.

  • Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y, et al. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 2022;16(10):15959–76. https://doi.org/10.1021/acsnano.2c03422.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Murphy A, Goldberg S. Mechanical complications of myocardial infarction. Am J Med. 2022;135(12):1401–9. https://doi.org/10.1016/j.amjmed.2022.08.017.

    Article 
    PubMed 

    Google Scholar
     

  • Heusch G. Myocardial ischemia/reperfusion: translational pathophysiology of ischemic heart disease. Med (N Y). 2024;5(1):10–31. https://doi.org/10.1016/j.medj.2023.12.007.

    Article 
    CAS 

    Google Scholar
     

  • GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.

    Article 

    Google Scholar
     

  • Peters SAE, Muntner P, Woodward M. Sex differences in the prevalence of, and trends in, cardiovascular risk factors, treatment, and control in the united states, 2001 to 2016. Circulation. 2019;139(8):1025–35. https://doi.org/10.1161/CIRCULATIONAHA.118.035550.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16. https://doi.org/10.1056/NEJMoa070829.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC State-of-the-Art review. J Am Coll Cardiol. 2021;78:1352–71.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen SD, Camici PG. The brain-heart axis in the perception of cardiac pain: the elusive link between ischaemia and pain. Ann Med. 2000;32(5):350–64. https://doi.org/10.3109/07853890008995938.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Z, Zhao Y, Hou Y, Tang G, Zhang R, Yang Y, et al. A thrombin-activated peptide‐templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions (adv. Mater. 10/2024). Adv Mater. 2024;36(10). https://doi.org/10.1002/adma.202470077.

  • Santa D, Vitiello F, Torcinaro L, Ferraro A. The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration. Antioxid Redox Signal. 2019;30(12):1553–98.

    PubMed 

    Google Scholar
     

  • Hou G, Chen S, Ngai T, Miao S, Pang J, Zhang L et al. The nanozymes of protein nanotubes-constructed microspheres with dual peroxidase-and catalase-like properties for M1-to-M2 macrophages repolarization and the synergistic anti-rheumatoid arthritis effect with loaded capsaicin. Nano Today. 2024;56.

  • Li B, Zhang Q, Du W, Wu J, Cheng J, Zhang Y, et al. Reshaping cardiac microenvironments by macrophage-derived extracellular vesicles-coated pd@ CeO2 heterostructures for myocardial ischemia/reperfusion injury therapy. Mater Today. 2023;65:47–61.

    CAS 

    Google Scholar
     

  • Feng L, Dou C, Xia Y, Li B, Zhao M, El-Toni AM, et al. Enhancement of nanozyme permeation by endovascular interventional treatment to prevent vascular restenosis via macrophage polarization modulation. Adv Funct Mater. 2020;30(52):2006581. https://doi.org/10.1002/adfm.202006581.

    Article 
    CAS 

    Google Scholar
     

  • Chen S, Luo X, Sun Y, Jin W, He R. A novel metabolic reprogramming strategy for the treatment of targeting to heart injury-mediated macrophages. Int Immunopharmacol. 2023;122:110377. https://doi.org/10.1016/j.intimp.2023.110377.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu X, Yu X, Jiang J, Yang J, Chen L, Yang Z, et al. Small molecule-assisted assembly of multifunctional ceria nanozymes for synergistic treatment of atherosclerosis. Nat Commun. 2022;13(1):6528. https://doi.org/10.1038/s41467-022-34248-y.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang Q, Jiang H, Wang Y, Leng X, Wang Y, Tong J. Plaque Macrophage-Targeting nanosystems with cooperative Co-Regulation of ROS and TRAF6 for stabilization of atherosclerotic plaques. Adv Funct Mater 2023. 33.

  • Wang L, Qiu S, Li X, Zhang Y, Huo M, Shi J. Myocardial-targeting Tannic cerium nanocatalyst attenuates ischemia/reperfusion injury. Angew Chem Int Ed Engl. 2023;62(39):e202305576. https://doi.org/10.1002/anie.202305576.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: enhancing drug delivery and efficacy. Biomed Pharmacother. 2024;180(117564):117564. https://doi.org/10.1016/j.biopha.2024.117564.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karthika V, Badrinathan Sridharan, Nam JW, Kim D, Gyun Lim H. Neuromodulation by nanozymes and ultrasound during alzheimer’s disease management. J Nanobiotechnol. 2024;22(1):139. https://doi.org/10.1186/s12951-024-02406-7.

    Article 

    Google Scholar
     

  • Jiang Nanozymes. A new approach for leukemiA therapy. J Mater Chem B. 2024.

  • Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano. 2021;15(2):2263–80. https://doi.org/10.1021/acsnano.0c07973.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Raskob GE, Angchaisuksiri P, Blanco AN, Büller H, Gallus A, Hunt BJ, et al. Thrombosis: a major contributor to global disease burden. Semin Thromb Hemost. 2014;40(7):724–35. https://doi.org/10.1055/s-0034-1390325.

    Article 
    PubMed 

    Google Scholar
     

  • Anderson FA Jr, Spencer FA. Risk factors for venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I9–16. https://doi.org/10.1161/01.CIR.0000078469.07362.E6.

    Article 
    PubMed 

    Google Scholar
     

  • Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021;398(10294):64–77. https://doi.org/10.1016/s0140-6736(20)32658-1.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Oleksiuk-Bójko M, Lisowska A. Venous thromboembolism: why is it still a significant health problem? Adv Med Sci. 2023;68(1):10–20. https://doi.org/10.1016/j.advms.2022.10.002.

    Article 
    PubMed 

    Google Scholar
     

  • Lowe GDO. Common risk factors for both arterial and venous thrombosis. Br J Haematol. 2008;140(5):488–95. https://doi.org/10.1111/j.1365-2141.2007.06973.x.

    Article 
    PubMed 

    Google Scholar
     

  • Delluc A, Lacut K, Rodger MA. Arterial and venous thrombosis: what’s the link? A narrative review. Thromb Res. 2020;191:97–102. https://doi.org/10.1016/j.thromres.2020.04.035.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Angchaisuksiri P. Arterial and venous thrombosis: shared risk factors and pathophysiology. J Hematol Transfus Med. 2019;29:355–62.


    Google Scholar
     

  • Yamashita A, Asada Y. Underlying mechanisms of thrombus formation/growth in atherothrombosis and deep vein thrombosis. Pathol Int. 2023;73(2):65–80. https://doi.org/10.1111/pin.13305.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang M, Zhu Y, Xin G, Wang Y, Li F, Li S, et al. Multi-enzyme mimetic iridium nanozymes-based thrombus microenvironment-modulated nanoplatform for enhanced thrombolytic therapy. Chem Eng J. 2023;470(144156):144156. https://doi.org/10.1016/j.cej.2023.144156.

    Article 
    CAS 

    Google Scholar
     

  • Qiao Y, Wang J, Nguyen T, Liu L, Ji X, Zhao W. Intravenous thrombolysis with urokinase for acute ischemic stroke. Brain Sci. 2024;14(10):989. https://doi.org/10.3390/brainsci14100989.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Murray V, Norrving B, Sandercock PAG, Terént A, Wardlaw JM, Wester P. The molecular basis of thrombolysis and its clinical application in stroke. J Intern Med. 2010;267(2):191–208. https://doi.org/10.1111/j.1365-2796.2009.02205.x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guan Q, Dou H. Thrombus-targeting polymeric nanocarriers and their biomedical applications in thrombolytic therapy. Front Physiol. 2021;12:763085. https://doi.org/10.3389/fphys.2021.763085.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Liu Y, Tao C, Cao Z, Guo S, Wei Z, et al. Bionic nanovesicles sequentially treat flaps with different durations of ischemia by thrombolysis and prevention of ischemia-reperfusion injury. Mater Today Bio. 2025;31(101529):101529. https://doi.org/10.1016/j.mtbio.2025.101529.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ren T, Mi Y, Wei J, Han X, Zhang X, Zhu Q, et al. Advances in nano-functional materials in targeted thrombolytic drug delivery. Molecules. 2024;29(10):2325. https://doi.org/10.3390/molecules29102325.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng J, Qi R, Dai C, Li G, Sang M. Enzyme catalysis biomotor engineering of neutrophils for nanodrug delivery and cell-based thrombolytic therapy. ACS Nano. 2022;16(2):2330–44. https://doi.org/10.1021/acsnano.1c08538.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma H, Jiang Z, Xu J, Liu J, Guo Z-N. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv. 2021;28(1):357–71. https://doi.org/10.1080/10717544.2021.1879315.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu J, Wang X, Yin H, Cao X, Hu Q, Lv W, et al. Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano. 2019;13(8):8577–88. https://doi.org/10.1021/acsnano.9b01798.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang S, Wang R, Meng N, Guo H, Wu S, Wang X, et al. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J Control Release. 2020;328:78–86. https://doi.org/10.1016/j.jconrel.2020.08.030.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pawlowski CL, Li W, Sun M, Ravichandran K, Hickman D, Kos C, et al. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials. 2017;128:94–108. https://doi.org/10.1016/j.biomaterials.2017.03.012.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xiang K, Wu H, Liu Y, Wang S, Li X, Yang B, et al. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics. 2023;13(8):2721–33. https://doi.org/10.7150/thno.83543.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao D, Li Q, Huang Q, Li X, Yin M, Wang Z, et al. Cardioprotective effect of Propofol against oxygen glucose deprivation and reperfusion injury in H9c2 cells. Oxid Med Cell Longev. 2015;2015:184938. https://doi.org/10.1155/2015/184938.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Sun M, Liu Y, Zhang Y, Xu L, Luo Y, et al. Platelet membrane-functionalized Hollow mesoporous Prussian blue nanomedicine for comprehensive thrombolytic management by targeted enhanced fibrinolysis and ROS scavenging. Chem Eng J. 2023;474(145515):145515. https://doi.org/10.1016/j.cej.2023.145515.

    Article 
    CAS 

    Google Scholar
     

  • Jheng P-R, Chiang C-C, Kang J-H, Fan Y-J, Wu KC-W, Chen Y-T, et al. Cold atmospheric plasma-enabled platelet vesicle incorporated iron oxide nano-propellers for thrombolysis. Mater Today Bio. 2023;23(100876):100876. https://doi.org/10.1016/j.mtbio.2023.100876.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Salaudeen MA, Bello N, Danraka RN, Ammani ML. Understanding the pathophysiology of ischemic stroke: the basis of current therapies and opportunity for new ones. Biomolecules. 2024;14(3):305. https://doi.org/10.3390/biom14030305.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Palmer SJ. Identification, care and prevention of stroke is possible. Br J Health Assist. 2023;17(6):236–9. https://doi.org/10.12968/bjha.2023.17.6.236.

    Article 

    Google Scholar
     

  • Fan J-L, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, et al. Integrative cerebral blood flow regulation in ischemic stroke. J Cereb Blood Flow Metab. 2022;42(3):387–403. https://doi.org/10.1177/0271678X211032029.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qin C, Yang S, Chu Y-H, Zhang H, Pang X-W, Chen L, et al. Correction To: Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):278. https://doi.org/10.1038/s41392-022-01129-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong MJ, Gronseth G, Anderson DC, Biller J, Cucchiara B, Dafer R, et al. Summary of evidence-based guideline: periprocedural management of antithrombotic medications in patients with ischemic cerebrovascular disease: report of the guideline development subcommittee of the American academy of neurology: report of the guideline development subcommittee of the American academy of neurology. Neurology. 2013;80(22):2065–9. https://doi.org/10.1212/WNL.0b013e318294b32d.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carolei A, Pistoia F, Sacco S, Mohr JP. Temporary is not always benign: similarities and differences between transient ischemic attack and angina. Mayo Clin Proc. 2013;88(7):708–19. https://doi.org/10.1016/j.mayocp.2013.04.014

  • Lioutas V-A, Ivan CS, Himali JJ, Aparicio HJ, Leveille T, Romero JR, et al. Incidence of transient ischemic attack and association with long-term risk of stroke. JAMA. 2021;325(4):373–81. https://doi.org/10.1001/jama.2020.25071.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki J, Miyata T, Hoshina K, Okamoto H, Kimura H, Shigematsu K. Surgical treatment of patients with congenital vascular malformation-associated aneurysms. Eur J Vasc Endovasc Surg. 2011;42(4):517–22. https://doi.org/10.1016/j.ejvs.2011.04.016.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, et al. Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health. GeroScience. 2025;47(1):745–79. https://doi.org/10.1007/s11357-024-01487-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burtscher J, Millet GP, Fresa M, Lanzi S, Mazzolai L, Pellegrin M. The link between impaired oxygen supply and cognitive decline in peripheral artery disease. Prog Cardiovasc Dis. 2024;85:63–73. https://doi.org/10.1016/j.pcad.2023.12.002.

    Article 
    PubMed 

    Google Scholar
     

  • Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021;101(4):1487–559. https://doi.org/10.1152/physrev.00022.2020.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rink C, Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Signal. 2011;14(10):1889–903. https://doi.org/10.1089/ars.2010.3474.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Clarke DD, Sokoloff L. Regulation of cerebral metabolic rate. Basic neurochemistry: molecular, cellular and medical aspects. Windermere, FL, USA: American Society for Neurochemistry; 1999.


    Google Scholar
     

  • Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: A report from the American heart association: A report from the American heart association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article 
    PubMed 

    Google Scholar
     

  • Lattanzi S, Silvestrini M. Blood pressure in acute intra-cerebral hemorrhage. Ann Transl Med. 2016;4(16):320. https://doi.org/10.21037/atm.2016.08.04.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlberg B, Asplund E. Comments, opinions, and reviews factors influencing admission blood pressure levels in patients with acute stroke. Stroke. 1991;22(4):527–30.

    PubMed 
    CAS 

    Google Scholar
     

  • Gujjar AR, Deibert E, Manno EM, Duff S, Diringer MN. Mechanical ventilation for ischemic stroke and intracerebral hemorrhage: indications, timing, and outcome: indications, timing, and outcome. Neurology. 1998;51(2):447–51. https://doi.org/10.1212/wnl.51.2.447.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salvadori E, Papi G, Insalata G, Rinnoci V, Donnini I, Martini M, et al. Comparison between ischemic and hemorrhagic strokes in functional outcome at discharge from an intensive rehabilitation hospital. Diagnostics (Basel). 2020;11(1):38. https://doi.org/10.3390/diagnostics11010038.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, et al. Nanozymes: potential therapies for reactive oxygen species overproduction and inflammation in ischemic stroke and traumatic brain injury. ACS Nano. 2024;18(26):16450–67. https://doi.org/10.1021/acsnano.4c03425.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017(1):8416763. https://doi.org/10.1155/2017/8416763.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Feng S, Yang M, Liu S, He Y, Deng S, Gong Y. Oxidative stress as a Bridge between age and stroke: A narrative review. J Intensive Med. 2023;3(4):313–9. https://doi.org/10.1016/j.jointm.2023.02.002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, et al. Nanozyme-enhanced electrochemical biosensors: mechanisms and applications. Small. 2024;20(14):e2307815. https://doi.org/10.1002/smll.202307815.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hamed EM, Rai V, Li SFY. Single-atom nanozymes with peroxidase-like activity: A review. Chemosphere. 2024;346(140557):140557. https://doi.org/10.1016/j.chemosphere.2023.140557.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hwang DW, Son S, Jang J, Youn H, Lee S, Lee D, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic MicroRNA. Biomaterials. 2011;32(21):4968–75. https://doi.org/10.1016/j.biomaterials.2011.03.047.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kong J, Zhou F. Preparation and application of carbon Dots nanozymes. Antioxid (Basel). 2024;13(5):535. https://doi.org/10.3390/antiox13050535.

    Article 
    CAS 

    Google Scholar
     

  • He L, Huang G, Liu H, Sang C, Liu X, Chen T. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci Adv. 2020;6(12):eaay9751. https://doi.org/10.1126/sciadv.aay9751.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang K, Tu M, Gao W, Cai X, Song F, Chen Z, et al. Hollow Prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 2019;19(5):2812–23. https://doi.org/10.1021/acs.nanolett.8b04729.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao Q, Du W, Zhou L, Wu J, Zhang X, Wei X, et al. Transferrin-enabled blood-brain barrier crossing manganese-based nanozyme for rebalancing the reactive oxygen species level in ischemic stroke. Pharmaceutics. 2022;14(6):1122. https://doi.org/10.3390/pharmaceutics14061122.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang Y, Deng G, Wang P, Lv G, Mao R, Sun Y, et al. A selenium nanocomposite protects the mouse brain from oxidative injury following intracerebral hemorrhage. Int J Nanomed. 2021;16:775–88. https://doi.org/10.2147/ijn.s293681.

    Article 

    Google Scholar
     

  • Kang MK, Kim TJ, Kim Y-J, Kang L, Kim J, Lee N, et al. Targeted delivery of iron oxide nanoparticle-loaded human embryonic stem cell-derived spherical neural masses for treating intracerebral hemorrhage. Int J Mol Sci. 2020;21(10):3658. https://doi.org/10.3390/ijms21103658.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461–70. https://doi.org/10.1111/j.1747-4949.2009.00387.x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJB, Culebras A, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American heart association/american stroke association: A statement for healthcare professionals from the American heart association/american stroke association. Stroke. 2013;44(7):2064–89. https://doi.org/10.1161/STR.0b013e318296aeca.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tapeinos C, Larrañaga A, Tomatis F, Bizeau J, Marino A, Battaglini M, et al. Advanced functional materials and cell-based therapies for the treatment of ischemic stroke and postischemic stroke effects. Adv Funct Mater. 2020;30(1):1906283. https://doi.org/10.1002/adfm.201906283.

    Article 
    CAS 

    Google Scholar
     

  • Gaudin A, Yemisci M, Eroglu H, Lepetre-Mouelhi S, Turkoglu OF, Dönmez-Demir B, et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol. 2014;9(12):1054–62. https://doi.org/10.1038/nnano.2014.274.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Yin Y, Zhang W, Li H, Wang T, Yin H, et al. Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic Prussian blue analogues boycott atherosclerosis. J Nanobiotechnol. 2021;19(1):161. https://doi.org/10.1186/s12951-021-00897-2.

    Article 
    CAS 

    Google Scholar
     

  • Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HMN. Bioactive material-based nanozymes with multifunctional attributes for biomedicine: expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coord Chem Rev. 2022;469(214685):214685. https://doi.org/10.1016/j.ccr.2022.214685.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, et al. The blood brain barrier in cerebral ischemic injury-Disruption and repair. Brain Hemorrhages. 2020;1:34–53.


    Google Scholar
     

  • Moon S, Chang M-S, Koh S-H, Choi YK. Repair mechanisms of the neurovascular unit after ischemic stroke with a focus on VEGF. Int J Mol Sci. 2021;22(16):8543. https://doi.org/10.3390/ijms22168543.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang L, Xiong X, Zhang L, Shen J, Neurovascular Unit. A critical role in ischemic stroke. CNS Neurosci Ther. 2021;27(1):7–16. https://doi.org/10.1111/cns.13561.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jithoo A, Penny TR, Pham Y, Sutherland AE, Smith MJ, Petraki M, et al. The Temporal relationship between blood-brain barrier integrity and microglial response following neonatal hypoxia ischemia. Cells. 2024;13(8). https://doi.org/10.3390/cells13080660.

  • Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. https://doi.org/10.1038/nature10144.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117–33. https://doi.org/10.1177/1947601911423654.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D, et al. Dietary Fe3O4 nanozymes prevent the injury of neurons and blood-brain barrier integrity from cerebral ischemic stroke. ACS Biomater Sci Eng. 2021;7(1):299–310. https://doi.org/10.1021/acsbiomaterials.0c01312.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tang Z, Meng S, Song Z, Yang X, Li X, Guo H, et al. Neutrophil membrane fusogenic nanoliposomal leonurine for targeted ischemic stroke therapy via remodeling cerebral niche and restoring blood-brain barrier integrity. Mater Today Bio. 2023;20(100674):100674. https://doi.org/10.1016/j.mtbio.2023.100674.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Partoazar A, Nasoohi S, Rezayat SM, Gilani K, Mehr SE, Amani A, et al. Nanoliposome containing cyclosporine A reduced neuroinflammation responses and improved neurological activities in cerebral ischemia/reperfusion in rat. Fundam Clin Pharmacol. 2017;31(2):185–93. https://doi.org/10.1111/fcp.12244.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Q, Wang J, Xiong X, Chen J, Wang B, Yang H, et al. Blood-brain barrier-penetrating metal-organic framework antioxidant nanozymes for targeted ischemic stroke therapy. Adv Healthc Mater. 2024;e2402376. https://doi.org/10.1002/adhm.202402376.

  • Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14(7):463–77. https://doi.org/10.1038/nri3705.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21(10):1359–69. https://doi.org/10.1038/s41593-018-0242-x.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang W, Li Q, Zhang R, Li J, Lin Q, Li J, et al. Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing parkinson’s disease. Nat Commun. 2023;14(1):8137. https://doi.org/10.1038/s41467-023-43870-3.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gong Y, Huang A, Guo X, Jia Z, Chen X, Zhu X, et al. Selenium-core nanozymes dynamically regulates Aβ & neuroinflammation circulation: augmenting repair of nervous damage. Chem Eng J. 2021;418(129345):129345. https://doi.org/10.1016/j.cej.2021.129345.

    Article 
    CAS 

    Google Scholar
     

  • Fredman G, Kamaly N, Spolitu S, Milton J, Ghorpade D, Chiasson R, et al. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med. 2015;7(275):275ra20. https://doi.org/10.1126/scitranslmed.aaa1065.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Beldman TJ, Senders ML, Alaarg A, Pérez-Medina C, Tang J, Zhao Y, et al. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano. 2017;11(6):5785–99. https://doi.org/10.1021/acsnano.7b01385.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin A, Liu S, Wei H. Nanozymes for biomedical applications in orthopaedics. Particuology. 2023;76:32–45. https://doi.org/10.1016/j.partic.2022.08.009.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Hou Y, Tang G, Li Y, Zhao Y, Yu Y, et al. Intelligent nanozymes: biomimetic design, mechanisms and biomedical applications. Fundamental Res. 2024. https://doi.org/10.1016/j.fmre.2024.11.013.

    Article 

    Google Scholar
     

  • Jeyachandran S, Srinivasan R, Ramesh T, Parivallal A, Lee J, Sathiyamoorthi E. Recent development and application of nanozyme artificial enzymes-A review. Biomimetics (Basel). 2023;8(5). https://doi.org/10.3390/biomimetics8050446.

  • Kurian AG, Singh RK, Sagar V, Lee J-H, Kim H-W. Nanozyme-engineered hydrogels for anti-inflammation and skin regeneration. Nanomicro Lett. 2024;16(1):110. https://doi.org/10.1007/s40820-024-01323-6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, et al. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther. 2024;9(1):1. https://doi.org/10.1038/s41392-023-01668-1.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Petrovic S, Bita B, Barbinta-Patrascu M-E. Nanoformulations in pharmaceutical and biomedical applications: green perspectives. Int J Mol Sci. 2024;25(11):5842. https://doi.org/10.3390/ijms25115842.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lewis DR, Kamisoglu K, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis: polymer based therapeutics for atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):400–20. https://doi.org/10.1002/wnan.145.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shi J, Yu W, Xu L, Yin N, Liu W, Zhang K, et al. Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxygen regulating. Nano Lett. 2020;20(1):780–9. https://doi.org/10.1021/acs.nanolett.9b04974.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salehi B, Del Prado-Audelo ML, Cortés H, Leyva-Gómez G, Stojanović-Radić Z, Singh YD, et al. Therapeutic applications of Curcumin nanomedicine formulations in cardiovascular diseases. J Clin Med. 2020;9(3):746. https://doi.org/10.3390/jcm9030746.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current development of nano-drug delivery to target macrophages. Biomedicines. 2022;10(5):1203. https://doi.org/10.3390/biomedicines10051203.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu C, Mao J, Wang X, Yang R, Wang C, Li C, et al. Advances in treatment strategies based on scavenging reactive oxygen species of nanoparticles for atherosclerosis. J Nanobiotechnol. 2023;21(1):271. https://doi.org/10.1186/s12951-023-02058-z.

    Article 

    Google Scholar
     

  • Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019;4(1):33. https://doi.org/10.1038/s41392-019-0068-3.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li S, Li F, Wang Y, Li W, Wu J, Hu X, et al. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: current strategies and future prospective. Drug Deliv. 2024;31(1):2298514. https://doi.org/10.1080/10717544.2023.2298514.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, et al. Nanomaterials in drug delivery: strengths and opportunities in medicine. Molecules. 2024;29(11):2584. https://doi.org/10.3390/molecules29112584.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chan Edgar Y, Wang J. Introduction for design of nanoparticle based drug delivery systems. Curr Pharm Design. 2017;23(14):2108–12.

    CAS 

    Google Scholar
     

  • Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022;14(4):883. https://doi.org/10.3390/pharmaceutics14040883.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Z, Li Y, Yuan Z, Wu L, Ma J, Tan W, et al. MOF nanozymes: active sites and sensing applications. Inorg Chem Front. 2025. https://doi.org/10.1039/d4qi02555e.

    Article 

    Google Scholar
     

  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76. https://doi.org/10.1039/c8cs00457a.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent progress and prospect of metal-organic framework-based nanozymes in biomedical application. Nanomaterials (Basel). 2024;14(3):244. https://doi.org/10.3390/nano14030244.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qiao R, Cong Y, Ovais M, Cai R, Chen C, Wang L. Performance modulation and analysis for catalytic biomedical nanomaterials in biological systems. Cell Rep Phys Sci. 2023;4(6):101453. https://doi.org/10.1016/j.xcrp.2023.101453.

    Article 
    CAS 

    Google Scholar
     

  • Zandieh M, Liu J. Surface science of nanozymes and defining a nanozyme unit. Langmuir. 2022;38(12):3617–22. https://doi.org/10.1021/acs.langmuir.2c00070.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, et al. Designing intelligent bioorthogonal nanozymes: recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release. 2024;373:929–51. https://doi.org/10.1016/j.jconrel.2024.07.073.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lyu S, Dong Z, Xu X, Bei H-P, Yuen H-Y, James Cheung C-W, et al. Going below and beyond the surface: microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater. 2023;27:303–26. https://doi.org/10.1016/j.bioactmat.2023.04.003.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qian X-L, Li J, Wei R, Lin H, Xiong L-X. Internal and external triggering mechanism of smart nanoparticle-based DDSs in targeted tumor therapy. Curr Pharm Des. 2018;24(15):1639–51. https://doi.org/10.2174/1381612824666180510094607.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ju Y, Liu X, Ye X, Dai M, Fang B, Shen X, et al. Nanozyme-based remodeling of disease microenvironments for disease prevention and treatment: A review. ACS Appl Nano Mater. 2023;6(15):13792–823. https://doi.org/10.1021/acsanm.3c02097.

    Article 
    CAS 

    Google Scholar
     

  • Wang S, Zhou Y, Liang X, Xu M, Li N, Zhao K. Platinum-cerium bimetallic nano-raspberry for atherosclerosis treatment via synergistic foam cell Inhibition and P2Y12 targeted antiplatelet aggregation. Chem Eng J. 2022;430(132859):132859. https://doi.org/10.1016/j.cej.2021.132859.

    Article 
    CAS 

    Google Scholar
     

  • Rascol E, Devoisselle J-M, Chopineau J. The relevance of membrane models to understand nanoparticles-cell membrane interactions. Nanoscale. 2016;8(9):4780–98. https://doi.org/10.1039/c5nr07954c.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin J, Miao L, Zhong G, Lin C-H, Dargazangy R, Alexander-Katz A. Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Commun Biol. 2020;3(1):205. https://doi.org/10.1038/s42003-020-0917-1.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin S, Cheng Y, Zhang H, Wang X, Zhang Y, Zhang Y, et al. Copper Tannic acid coordination nanosheet: A potent nanozyme for scavenging ROS from cigarette smoke. Small. 2020;16(27):e1902123. https://doi.org/10.1002/smll.201902123.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu X, Sun T, Sun Y, Manshina A, Wang L. Polyoxometalate-based peroxidase-like nanozymes. Nano Mater Sci. 2024. https://doi.org/10.1016/j.nanoms.2024.03.002.

    Article 

    Google Scholar
     

  • Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, et al. Nanozymes: a bibliometrics review. J Nanobiotechnol. 2024;22(1):704. https://doi.org/10.1186/s12951-024-02907-5.

    Article 

    Google Scholar
     

  • Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial shape influence on cell behavior. Int J Mol Sci. 2021;22(10):5266. https://doi.org/10.3390/ijms22105266.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro AI, Dias AM, Zille A. Synergistic effects between metal nanoparticles and commercial antimicrobial agents: A review. ACS Appl Nano Mater. 2022;5(3):3030–64. https://doi.org/10.1021/acsanm.1c03891.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marino P, Mininni M, Deiana G, Marino G, Divella R, Bochicchio I, et al. Healthy lifestyle and cancer risk: modifiable risk factors to prevent cancer. Nutrients. 2024;16(6):800. https://doi.org/10.3390/nu16060800.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Katic L, Choi J, Diaz Saravia S, Silverman A, Nagourney A, Torelli V, et al. The interplay between cardiovascular disease and lung cancer. Cureus. 2024;16(6):e62953. https://doi.org/10.7759/cureus.62953.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Facciolà A, Visalli G, D’Andrea G, Varvarà M, Santoro G, Cuffari R, et al. Prevention of cardiovascular diseases and diabetes: importance of a screening program for the early detection of risk conditions in a target population. J Prev Med Hyg. 2021;62(4):E934–42. https://doi.org/10.15167/2421-4248/jpmh2021.62.4.2360.

    Article 
    PubMed 

    Google Scholar
     

  • Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–14. https://doi.org/10.1161/CIRCULATIONAHA.115.020406.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mensah GA, Fuster V, Murray CJ, Roth GA. Global burden of cardiovascular diseases and risks collaborators. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol. 1990;82(25):2350–473.


    Google Scholar
     

  • Zmaili M, Alzubi J, Alkhayyat M, Albakri A, Alkhalaileh F, Longinow J, et al. Cancer and cardiovascular disease: the conjoined twins. Cancers (Basel). 2024;16(8). https://doi.org/10.3390/cancers16081450.

  • Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, et al. Cardiovascular disease and breast cancer: where these entities intersect: A scientific statement from the American heart association. Circulation. 2018;137(8):e30–66. https://doi.org/10.1161/CIR.0000000000000556.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Lenarda F, Balestrucci A, Terzi R, Lopes P, Ciliberti G, Marchetti D, et al. Coronary artery disease, family history, and screening perspectives: an up-to-date review. J Clin Med. 2024;13(19). https://doi.org/10.3390/jcm13195833.

  • Lopez-Jimenez F, Almahmeed W, Bays H, Cuevas A, Di Angelantonio E, le Roux CW, et al. Obesity and cardiovascular disease: mechanistic insights and management strategies. A joint position paper by the world heart federation and world obesity federation. Eur J Prev Cardiol. 2022;29(17):2218–37. https://doi.org/10.1093/eurjpc/zwac187.

    Article 
    PubMed 

    Google Scholar
     

  • Liu S, Xu J, Xing Y, Yan T, Yu S, Sun H, et al. Nanozymes as efficient tools for catalytic therapeutics. View (Beijing). 2022;3(2):20200147. https://doi.org/10.1002/viw.20200147.

    Article 
    CAS 

    Google Scholar
     

  • Xu D, Wu L, Yao H, Zhao L. Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small. 2022;18(37):e2203400. https://doi.org/10.1002/smll.202203400.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kott KA, Bishop M, Yang CHJ, Plasto TM, Cheng DC, Kaplan AI, et al. Biomarker development in cardiology: reviewing the past to inform the future. Cells. 2022;11(3):588. https://doi.org/10.3390/cells11030588.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Wei G, Liu W, Li T, Wang Y, Zhou M, et al. Nanozymes for nanohealthcare. Nat Rev Methods Primers. 2024;4(1). https://doi.org/10.1038/s43586-024-00315-5.

  • Ai Y, Hu Z-N, Liang X, Sun H-B, Xin H, Liang Q. Recent advances in nanozymes: from matters to bioapplications. Adv Funct Mater. 2022;32(14):2110432. https://doi.org/10.1002/adfm.202110432.

    Article 
    CAS 

    Google Scholar
     

  • Park Y-S, Park BU, Jeon H-J. Advances in machine learning-enhanced nanozymes. Front Chem. 2024;12:1483986. https://doi.org/10.3389/fchem.2024.1483986.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xing Y, Yasinjan F, Sun S, Yang J, Du Y, Zhang H, et al. Nanozyme-based cancer theranostics: A scientometric analysis and comprehensive review. Nano Today. 2024;57(102386):102386. https://doi.org/10.1016/j.nantod.2024.102386.

    Article 
    CAS 

    Google Scholar
     

  • You Y, Tang Z, Lin H, Shi J. Emerging two-dimensional material nanozymes for theranostic nanomedicine. Biophys Rep. 2021;7(3):159–72. https://doi.org/10.52601/bpr.2021.210011.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, et al. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnol. 2024;22(1):715. https://doi.org/10.1186/s12951-024-02901-x.

    Article 

    Google Scholar
     

  • Du P, Gao L, Jiao J, Fan K, Yan X, Nanozyme. Combining power of natural enzymes and artificial catalysis. Bull Chin Acad Sci. 2024;(5):809–20.

  • Goya GF, Mayoral A, Winkler E, Zysler RD, Bagnato C, Raineri M, et al. Next generation of nanozymes: A perspective of the challenges to match biological performance. J Appl Phys. 2021;130(19):190903. https://doi.org/10.1063/5.0061499.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Zhang R, Yan X, Fan K. Structure and activity of nanozymes: inspirations for de Novo design of nanozymes. Mater Today (Kidlington). 2020;41:81–119. https://doi.org/10.1016/j.mattod.2020.08.020.

    Article 
    CAS 

    Google Scholar
     

  • Subin TS, Vijayan V, Kumar KJR. Updated regulatory considerations for nanomedicines. Pharm Nanotechnol. 2017;5(3):180–91. https://doi.org/10.2174/2211738505666170615095542.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bleeker E, Swart E, Braakhuis H, Cruz F, Friedrichs ML, Gosens S. Towards harmonisation of testing of nanomaterials for EU regulatory requirements on chemical safety-a proposal for further actions. Regul Toxicol Pharmacol. 2023;139.

  • Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, et al. Multienzyme-like nanozymes: regulation, rational design, and application. Adv Mater. 2024;36(10):e2211210. https://doi.org/10.1002/adma.202211210.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu H, Li S, Liu Y-S. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther. 2022;7(1):231. https://doi.org/10.1038/s41392-022-01082-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innov (Camb). 2022;3(2):100214. https://doi.org/10.1016/j.xinn.2022.100214.

    Article 
    CAS 

    Google Scholar
     

  • Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, et al. Role of nanoparticle-conjugates and nanotheranostics in abrogating oxidative stress and ameliorating neuroinflammation. Antioxid (Basel). 2023;12(10). https://doi.org/10.3390/antiox12101877.

  • Lemos FA, Silva KB, Campos C, de Silva C, Santos NOS, dos Barauna UG. Key nanotechnology breakthroughs in cardiovascular disease therapy. Int J Cardiovasc Sci. 2024;37. https://doi.org/10.36660/ijcs.20230050.

  • Sun Y, Xu T, Qian Y, Chen Q, Xiong F, Du W, et al. NOS-like activity of CeO2 nanozymes contributes to diminishing the vascular plaques. J Nanobiotechnol. 2024;22(1):12. https://doi.org/10.1186/s12951-023-02276-5.

    Article 
    CAS 

    Google Scholar
     

  • Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in stimuli-responsive biomaterials for treating cardiovascular and cerebrovascular diseases. Small. 2022;18(36):e2200291. https://doi.org/10.1002/smll.202200291.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Soumya RS, Raghu KG. Recent advances on nanoparticle-based therapies for cardiovascular diseases. J Cardiol. 2023;81(1):10–8. https://doi.org/10.1016/j.jjcc.2022.02.009.

    Article 
    PubMed 

    Google Scholar
     

  • Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, et al. Gold nanoparticle-based platforms for diagnosis and treatment of myocardial infarction. ACS Biomater Sci Eng. 2020;6(12):6460–77. https://doi.org/10.1021/acsbiomaterials.0c00955.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric oxide releasing nanomaterials for cardiovascular applications. JACC Basic Transl Sci. 2024;9(5):691–709. https://doi.org/10.1016/j.jacbts.2023.07.017.

    Article 
    PubMed 

    Google Scholar
     

  • Liang S, Tian X, Wang C. Nanozymes in the treatment of diseases caused by excessive reactive oxygen specie. J Inflamm Res. 2022;15:6307–28. https://doi.org/10.2147/JIR.S383239.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang DK, Rahimi M, Filgueira CS. Nanotechnology applications for cardiovascular disease treatment: current and future perspectives. Nanomedicine. 2021;34(102387):102387. https://doi.org/10.1016/j.nano.2021.102387.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shan J, Liu X, Li X, Yu Y, Kong B, Ren L. Advances in antioxidative nanozymes for treating ischemic stroke. Eng Regeneration. 2023;4(1):95–102. https://doi.org/10.1016/j.engreg.2023.01.001.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Lv J, Wang X, Huang XT, Zhang C, Pan Q, et al. Targeted nanozyme-enabled treatment of cardiovascular diseases. Acta Materia Med. 2025;4(1):70–81.

    CAS 

    Google Scholar
     



  • Source link

    cardiovascular cerebrovascular Challenges clinical Current diseases Journal Nanobiotechnology nanomedicine nanozyme potential targeted therapies
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Tailoring nanoscale interfaces for perovskite–perovskite–silicon triple-junction solar cells

    October 13, 2025

    A record-breaking anisotropic van der Waals crystal? – Physics World

    October 12, 2025

    Eco-Friendly Nanoparticles for Water Purification Solutions

    October 12, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    How to run RAG projects for better data analytics results

    October 13, 2025

    MacBook Air deal: Save 10% Apple’s slim M4 notebook

    October 13, 2025

    Part 1 – Energy as the Ultimate Bottleneck

    October 13, 2025

    From Static Products to Dynamic Systems

    October 13, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    How to run RAG projects for better data analytics results

    October 13, 2025

    MacBook Air deal: Save 10% Apple’s slim M4 notebook

    October 13, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.