Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Announcing Amazon EC2 G7e instances accelerated by NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs

    January 25, 2026

    Tech CEOs boast and bicker about AI at Davos

    January 25, 2026

    How Content Management Is Transforming Construction ERP

    January 25, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Nanoparticle-mediated targeting chimeras transform targeted protein degradation
    Nanotechnology

    Nanoparticle-mediated targeting chimeras transform targeted protein degradation

    big tee tech hubBy big tee tech hubJanuary 20, 2026028 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Nanoparticle-mediated targeting chimeras transform targeted protein degradation
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Tsai, J. M., Nowak, R. P., Ebert, B. L. & Fischer, E. S. Targeted protein degradation: from mechanisms to clinic. Nat. Rev. Mol. Cell Biol. 25, 740–757 (2024). This review systematically examined TPD mechanisms and placed special emphasis on their progress towards clinical translation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garber, K. The PROTAC gold rush. Nat. Biotechnol. 40, 12–16 (2022). This commentary captured the excitement around PROTACs, noting their promise for‘undruggable’ targets and also the uncertainties of clinical success.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022). This paper comprehensively traced the rise of PROTACs and summarized the key milestones that shaped the field.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, K. & Schulman, B. A. Molecular glue concept solidifies. Nat. Chem. Biol. 16, 2–3 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, H., Rutter, J. C., Li, Y.-D. & Ebert, B. L. Induced protein degradation for therapeutics: past, present, and future. J. Clin. Invest. 134, e175265 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, J. et al. PROTAC-DB 3.0: an updated database of PROTACs with extended pharmacokinetic parameters. Nucleic Acids Res. 53, D1510–D1515 (2024).

    Article 
    PubMed Central 

    Google Scholar
     

  • Hsia, O. et al. Targeted protein degradation via intramolecular bivalent glues. Nature 627, 204–211 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Expanding PROTACtable genome universe of E3 ligases. Nat. Commun. 14, 6509 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guenette, R. G., Yang, S. W., Min, J., Pei, B. & Potts, P. R. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev. 51, 5740–5756 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campone, M. et al. Vepdegestrant, a PROTAC estrogen receptor degrader, in advanced breast cancer. N. Engl. J. Med. 393, 556–568 (2025). This paper summarized the Phase 3 clinical trial outcomes of the pioneering PROTAC ARV-471, demonstrating positive benefits in certain subpopulations and highlighting the need for personalized medicine.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019). This study is an early example of using high-throughput screening to discover small molecules that direct mutant huntingtin to autophagosomes for degradation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e710 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, C. H. et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat. Commun. 13, 904 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muhar, M. F. et al. C-terminal amides mark proteins for degradation via SCF–FBXO31. Nature 638, 519–527 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Mitochondrial protease targeting chimeras for mitochondrial matrix protein degradation. J. Am. Chem. Soc. 145, 12861–12869 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. X. et al. An endoplasmic reticulum (ER)-targeting DNA nanodevice for autophagy-dependent degradation of proteins in membrane-bound organelles. Angew. Chem. Int. Ed. 61, e202205509 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, P. et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 187, 7126–7142.e7120 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, X. et al. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381, eadh5021 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lascaux, P. et al. TEX264 drives selective autophagy of DNA lesions to promote DNA repair and cell survival. Cell 187, 5698–5718.e5626 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA. Nat. Cell Biol. 26, 878–891 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Rpl12 is a conserved ribophagy receptor. Nat. Cell Biol. 27, 477–492 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koutsifeli, P. et al. Glycogen-autophagy: molecular machinery and cellular mechanisms of glycophagy. J. Biol. Chem. 298, 102093 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Single amino acid based PROTACs trigger degradation of the oncogenic kinase ABL in chronic myeloid leukemia (CML). J. Biol. Chem. 299, 104994 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 13, 132 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, H. et al. Anti-inflammatory clearance of amyloid-β by a chimeric Gas6 fusion protein. Nat. Med. 28, 1802–1812 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020). This study pioneered lysosome-targeting chimeras for extracellular protein degradation, inspiring further research.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, G. et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, D. et al. Transferrin receptor targeting chimeras for membrane protein degradation. Nature 638, 787–795 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Targeted protein degradation via cellular trafficking of nanoparticles. Nat. Nanotechnol. 20, 296–302 (2025). This study comprehensively demonstrates that ligand-installed nanoparticles can degrade their corresponding membrane proteins across diverse nanoparticle formulations and ligand types.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. Nat. Nanotechnol. 19, 545–553 (2024). This study pioneers the use of ligand-installed nanoparticles to degrade the intracellular protein mutant p53 and demonstrates that nanoparticle positive charge enhances their degradation capacity.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, S. et al. A plug-and-play monofunctional platform for targeted degradation of extracellular proteins and vesicles. Nat. Commun. 15, 7237 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, J. et al. Semiconducting polymer nanoparticles with surface-mimicking protein secondary structure as lysosome-targeting chimaeras for self-synergistic cancer immunotherapy. Adv. Mater. 34, 2203309 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Lysosome-targeting protein degradation through endocytosis pathway triggered by polyvalent nano-chimera for AD therapy. Adv. Mater. 37, 2411061 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Fan, K. et al. Bioengineered ferritin-based LYTAC platform for tumor-targeted therapy. Preprint at Research Square (2025).

  • Jin, P. et al. Development of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins. Acta Biomater. 195, 509–521 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukhopadhyay, A., Basu, S., Singha, S. & Patra, H. K. Inner-view of nanomaterial incited protein conformational changes: insights into designable interaction. Research 2018, 9712832 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y., Cui, L., Liu, Z., Tang, Z. & Chen, X. Multivalent RGD peptide-mediated nanochimera for lysosomal degradation of PDL1 orotein. Nano Lett. 25, 4078–4086 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J. Control. Release 360, 15–43 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, C. et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research 6, 0148 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNally, K. E. & Cullen, P. J. Endosomal retrieval of cargo: retromer is not alone. Trends Cell Biol. 28, 807–822 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, L. N. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral, H., Li, J., Miyata, K. & Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2, 214–232 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mi, P., Cabral, H. & Kataoka, K. Ligand-installed nanocarriers toward precision therapy. Adv. Mater. 32, 1902604 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, S. et al. Accelerated rational PROTAC design via deep learning and molecular simulations. Nat. Mach. Intell. 4, 739–748 (2022).

    Article 

    Google Scholar
     

  • Chen, D., Liu, J. & Wei, G.-W. Multiscale topology-enabled structure-to-sequence transformer for protein–ligand interaction predictions. Nat. Mach. Intell. 6, 799–810 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adir, O. et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 32, 1901989 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rao, L., Yuan, Y., Shen, X., Yu, G. & Chen, X. Designing nanotheranostics with machine learning. Nat. Nanotechnol. 19, 1769–1781 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    chimeras degradation Nanoparticlemediated Protein targeted Targeting Transform
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Nanomaterials Transformed by Engineering Shape, Not Chemistry

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 23, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Announcing Amazon EC2 G7e instances accelerated by NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs

    January 25, 2026

    Tech CEOs boast and bicker about AI at Davos

    January 25, 2026

    How Content Management Is Transforming Construction ERP

    January 25, 2026

    This week in AI updates: GitHub Copilot SDK, Claude’s new constitution, and more (January 23, 2026)

    January 25, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Announcing Amazon EC2 G7e instances accelerated by NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs

    January 25, 2026

    Tech CEOs boast and bicker about AI at Davos

    January 25, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.