Tsai, J. M., Nowak, R. P., Ebert, B. L. & Fischer, E. S. Targeted protein degradation: from mechanisms to clinic. Nat. Rev. Mol. Cell Biol. 25, 740–757 (2024). This review systematically examined TPD mechanisms and placed special emphasis on their progress towards clinical translation.
Garber, K. The PROTAC gold rush. Nat. Biotechnol. 40, 12–16 (2022). This commentary captured the excitement around PROTACs, noting their promise for‘undruggable’ targets and also the uncertainties of clinical success.
Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022). This paper comprehensively traced the rise of PROTACs and summarized the key milestones that shaped the field.
Baek, K. & Schulman, B. A. Molecular glue concept solidifies. Nat. Chem. Biol. 16, 2–3 (2020).
Yoon, H., Rutter, J. C., Li, Y.-D. & Ebert, B. L. Induced protein degradation for therapeutics: past, present, and future. J. Clin. Invest. 134, e175265 (2024).
Ge, J. et al. PROTAC-DB 3.0: an updated database of PROTACs with extended pharmacokinetic parameters. Nucleic Acids Res. 53, D1510–D1515 (2024).
Hsia, O. et al. Targeted protein degradation via intramolecular bivalent glues. Nature 627, 204–211 (2024).
Liu, Y. et al. Expanding PROTACtable genome universe of E3 ligases. Nat. Commun. 14, 6509 (2023).
Guenette, R. G., Yang, S. W., Min, J., Pei, B. & Potts, P. R. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev. 51, 5740–5756 (2022).
Campone, M. et al. Vepdegestrant, a PROTAC estrogen receptor degrader, in advanced breast cancer. N. Engl. J. Med. 393, 556–568 (2025). This paper summarized the Phase 3 clinical trial outcomes of the pioneering PROTAC ARV-471, demonstrating positive benefits in certain subpopulations and highlighting the need for personalized medicine.
Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019). This study is an early example of using high-throughput screening to discover small molecules that direct mutant huntingtin to autophagosomes for degradation.
Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e710 (2019).
Ji, C. H. et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat. Commun. 13, 904 (2022).
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).
Muhar, M. F. et al. C-terminal amides mark proteins for degradation via SCF–FBXO31. Nature 638, 519–527 (2025).
Wang, D. et al. Mitochondrial protease targeting chimeras for mitochondrial matrix protein degradation. J. Am. Chem. Soc. 145, 12861–12869 (2023).
Liu, C. X. et al. An endoplasmic reticulum (ER)-targeting DNA nanodevice for autophagy-dependent degradation of proteins in membrane-bound organelles. Angew. Chem. Int. Ed. 61, e202205509 (2022).
Lu, P. et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 187, 7126–7142.e7120 (2024).
Gu, X. et al. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381, eadh5021 (2023).
Lascaux, P. et al. TEX264 drives selective autophagy of DNA lesions to promote DNA repair and cell survival. Cell 187, 5698–5718.e5626 (2024).
Liu, H. et al. TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA. Nat. Cell Biol. 26, 878–891 (2024).
Chen, Y. et al. Rpl12 is a conserved ribophagy receptor. Nat. Cell Biol. 27, 477–492 (2025).
Koutsifeli, P. et al. Glycogen-autophagy: molecular machinery and cellular mechanisms of glycophagy. J. Biol. Chem. 298, 102093 (2022).
Zhang, J. et al. Single amino acid based PROTACs trigger degradation of the oncogenic kinase ABL in chronic myeloid leukemia (CML). J. Biol. Chem. 299, 104994 (2023).
Zhang, S. et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 13, 132 (2022).
Jung, H. et al. Anti-inflammatory clearance of amyloid-β by a chimeric Gas6 fusion protein. Nat. Med. 28, 1802–1812 (2022).
Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020). This study pioneered lysosome-targeting chimeras for extracellular protein degradation, inspiring further research.
Ahn, G. et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).
Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).
Zhang, D. et al. Transferrin receptor targeting chimeras for membrane protein degradation. Nature 638, 787–795 (2025).
Liu, Y. et al. Targeted protein degradation via cellular trafficking of nanoparticles. Nat. Nanotechnol. 20, 296–302 (2025). This study comprehensively demonstrates that ligand-installed nanoparticles can degrade their corresponding membrane proteins across diverse nanoparticle formulations and ligand types.
Huang, X. et al. Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. Nat. Nanotechnol. 19, 545–553 (2024). This study pioneers the use of ligand-installed nanoparticles to degrade the intracellular protein mutant p53 and demonstrates that nanoparticle positive charge enhances their degradation capacity.
Yao, S. et al. A plug-and-play monofunctional platform for targeted degradation of extracellular proteins and vesicles. Nat. Commun. 15, 7237 (2024).
Qi, J. et al. Semiconducting polymer nanoparticles with surface-mimicking protein secondary structure as lysosome-targeting chimaeras for self-synergistic cancer immunotherapy. Adv. Mater. 34, 2203309 (2022).
Wang, X. et al. Lysosome-targeting protein degradation through endocytosis pathway triggered by polyvalent nano-chimera for AD therapy. Adv. Mater. 37, 2411061 (2025).
Fan, K. et al. Bioengineered ferritin-based LYTAC platform for tumor-targeted therapy. Preprint at Research Square (2025).
Jin, P. et al. Development of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins. Acta Biomater. 195, 509–521 (2025).
Mukhopadhyay, A., Basu, S., Singha, S. & Patra, H. K. Inner-view of nanomaterial incited protein conformational changes: insights into designable interaction. Research 2018, 9712832 (2018).
Song, Y., Cui, L., Liu, Z., Tang, Z. & Chen, X. Multivalent RGD peptide-mediated nanochimera for lysosomal degradation of PDL1 orotein. Nano Lett. 25, 4078–4086 (2025).
Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).
Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).
Wang, S. et al. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J. Control. Release 360, 15–43 (2023).
Qiu, C. et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research 6, 0148 (2023).
McNally, K. E. & Cullen, P. J. Endosomal retrieval of cargo: retromer is not alone. Trends Cell Biol. 28, 807–822 (2018).
Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).
Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).
Nguyen, L. N. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).
Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).
Cabral, H., Li, J., Miyata, K. & Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2, 214–232 (2024).
Mi, P., Cabral, H. & Kataoka, K. Ligand-installed nanocarriers toward precision therapy. Adv. Mater. 32, 1902604 (2020).
Zheng, S. et al. Accelerated rational PROTAC design via deep learning and molecular simulations. Nat. Mach. Intell. 4, 739–748 (2022).
Chen, D., Liu, J. & Wei, G.-W. Multiscale topology-enabled structure-to-sequence transformer for protein–ligand interaction predictions. Nat. Mach. Intell. 6, 799–810 (2024).
Adir, O. et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 32, 1901989 (2020).
Rao, L., Yuan, Y., Shen, X., Yu, G. & Chen, X. Designing nanotheranostics with machine learning. Nat. Nanotechnol. 19, 1769–1781 (2024).
