Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    eSIM tech flaw exposes smartphones to serious hacking risks

    July 18, 2025

    Solution Validation Services Matter More Than Ever Before

    July 18, 2025

    iPhone 17 Pro may get anti-reflective display glass

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Nanoscale high-entropy surface engineering promotes selective glycerol electro-oxidation to glycerate at high current density
    Nanotechnology

    Nanoscale high-entropy surface engineering promotes selective glycerol electro-oxidation to glycerate at high current density

    big tee tech hubBy big tee tech hubMarch 19, 2025008 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Nanoscale high-entropy surface engineering promotes selective glycerol electro-oxidation to glycerate at high current density
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Da Silva Ruy, A. D., Ferreira, A. L. F., Bresciani, A. É., de Brito Alves, R. M. & Pontes, L. A. M. Market prospecting and assessment of the economic potential of glycerol from biodiesel. In Biotechnological Applications of Biomass (eds Basso, T. P. et al.) Ch. 11 (IntechOpen Press, 2021).

  • Yan, Y. et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J. Am. Chem. Soc. 145, 6144–6155 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schichtl, Z. G., Conlin, S. K., Mehrabi, H., Nielander, A. C. & Coridan, R. H. Characterizing sustained solar-to-hydrogen electrocatalysis at low cell potentials enabled by crude glycerol oxidation. ACS Appl. Energy Mater. 5, 3863–3875 (2022).

    Article 
    CAS 

    Google Scholar
     

  • de Souza, M. B. C. et al. Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline solution: effects on activity and selectivity. ACS Catal. 9, 5104–5110 (2019).

    Article 

    Google Scholar
     

  • Houache, M. S. E. et al. Electrochemical valorization of glycerol on Ni-rich bimetallic NiPd nanoparticles: insight into product selectivity using in situ polarization modulation infrared-reflection absorption spectroscopy. ACS Sustain. Chem. Eng. 7, 14425–14434 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Xiao, Y. & Xiao, G. Sustainable value-added C3 chemicals from glycerol transformations: a mini review for heterogeneous catalytic processes. Chinese J. Chem. Eng. 27, 1536–1542 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Valter, M., dos Santos, E. C., Pettersson, L. G. M. & Hellman, A. Partial electrooxidation of glycerol on close-packed transition metal surfaces: insights from first-principles calculations. J. Phys. Chem. C 124, 17907–17915 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dodekatos, G., Schünemann, S. & Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dai, C. et al. Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 356, 14–21 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Huang, B. et al. Seeded synthesis of hollow PdSn intermetallic nanomaterials for highly efficient electrocatalytic glycerol oxidation. Adv. Mater. 35, 2302233 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Electrocatalytic glycerol oxidation with concurrent hydrogen evolution utilizing an efficient MoOx/Pt Catalyst. Small 17, 2104288 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Ligand hybridization for electro-reforming waste glycerol into isolable oxalate and hydrogen. Angew. Chem. Int. Ed. 62, e202216083 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. et al. Reaction mechanism and kinetics for Pt/CNTs catalyzed base-free oxidation of glycerol. Chem. Eng. Sci. 203, 228–236 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Holade, Y., Morais, C., Servat, K., Napporn, T. W. & Kokoh, K. B. Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies. ACS Catal. 3, 2403–2411 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jeffery, D. Z. & Camara, G. A. The formation of carbon dioxide during glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem. Commun. 12, 1129–1132 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Terekhina, I. & Johnsson, M. Improving glycerol electrooxidation performance on nanocubic PtCo Catalysts. ACS Appl. Mater. Interfaces 16, 56987–56996 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, W. et al. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Feng, G. et al. Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity facets for oxygen reduction in practical fuel cells. J. Am. Chem. Soc. 145, 11140–11150 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xing, F., Ma, J., Shimizu, K. I. & Furukawa, S. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Commun. 13, 5065 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ren, J.-T., Chen, L., Wang, H.-Y. & Yuan, Z.-Y. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 52, 8319–8373 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, H. et al. The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B 312, 121431 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 143, 11262–11270 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Structure and performance relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Appl. Catal. B 292, 120164 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Russell, A. E. & Rose, A. X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 104, 4613–4636 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo, H. et al. Role of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemicals coproduction via glycerol electrooxidation. ACS Catal. 12, 14492–14506 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xing, Z., Li, J., Wang, S., Su, C. & Jin, H. Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction. Nano Res. 15, 3866–3871 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jia, Q. et al. Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: strain, ligand, and particle size effects. ACS Catal. 5, 176–186 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jia, Q. et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 18, 798–804 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Promoting n-butane dehydrogenation over PtMn/SiO2 through structural evolution induced by a reverse water-gas shift reaction. ACS Catal. 12, 13506–13512 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takimoto, D. et al. Platinum nanosheets synthesized via topotactic reduction of single-layer platinum oxide nanosheets for electrocatalysis. Nat. Commun. 14, 19 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, J., Yang, X. & Gong, M. Recent advances in glycerol valorization via electrooxidation: catalyst, mechanism and device. Chinese J. Catal. 43, 2966–2986 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Simões, M., Baranton, S. & Coutanceau, C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl. Catal. B 93, 354–362 (2010).

    Article 

    Google Scholar
     

  • Zhang, W.-Y., Zou, S.-Z. & Cai, W.-B. Recent advances in glycerol electrooxidation on Pt and Pd: from reaction mechanisms to catalytic materials. J. Electrochem. 27, 233–256 (2021).


    Google Scholar
     

  • Vo, T.-G., Ho, P.-Y. & Chiang, C.-Y. Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide. Appl. Catal. B 300, 120723 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst—CuO. Appl. Catal. B 265, 118543 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Pang, X. et al. In situ electrochemical reconstitution of CF–CuO/CeO2 for efficient active species generation. Inorg. Chem. 61, 8940–8954 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, Y., Wei, X., Han, S., Chen, L. & Shi, J. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew. Chem. Int. Ed. 60, 21464–21472 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vo, T.-G. et al. Au@NiSx yolk@shell nanostructures as dual-functional electrocatalysts for concomitant production of value-added tartronic acid and hydrogen fuel. Adv. Funct. Mater. 33, 2209386 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chang, Z., Huo, S., Zhang, W., Fang, J. & Wang, H. The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction. J. Phys. Chem. C 121, 11368–11379 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bu, L. et al. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 139, 9576–9582 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Source link

    Current Density electrooxidation Engineering glycerate glycerol High highentropy Nanoscale promotes selective surface
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Reflection, co-founded by ex-Google researchers, unveils Asimov, an AI agent that reads a company’s codebase, docs, and more to help software engineering teams (Will Knight/Wired)

    July 16, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    eSIM tech flaw exposes smartphones to serious hacking risks

    July 18, 2025

    Solution Validation Services Matter More Than Ever Before

    July 18, 2025

    iPhone 17 Pro may get anti-reflective display glass

    July 18, 2025

    Bridging the Digital Chasm: How Enterprises Conquer B2B Integration Roadblocks

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    eSIM tech flaw exposes smartphones to serious hacking risks

    July 18, 2025

    Solution Validation Services Matter More Than Ever Before

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.