Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Nonlinear Nernst effect in trilayer graphene at zero magnetic field
    Nanotechnology

    Nonlinear Nernst effect in trilayer graphene at zero magnetic field

    big tee tech hubBy big tee tech hubJune 27, 2025006 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Nonlinear Nernst effect in trilayer graphene at zero magnetic field
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Xiao, D., Yao, Y., Fang, Z. & Niu, Q. Berry-phase effect in anomalous thermoelectric transport. Phys. Rev. Lett. 97, 026603 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Uchida, K. I. & Heremans, J. P. Thermoelectrics: from longitudinal to transverse. Joule 6, 2240–2245 (2022).

    Article 

    Google Scholar
     

  • Uchida, K. I., Zhou, W. & Sakuraba, Y. Transverse thermoelectric generation using magnetic materials. Appl. Phys. Lett. 118, 140504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, Y. et al. Giant anomalous Nernst signal in the antiferromagnet YbMnBi2. Nat. Mater. 21, 203–209 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asaba, T., Ivanov, V., Thomas, S. M., Savrasov, S. Y. & Ronning, F. Colossal anomalous Nernst effect in a correlated noncentrosymmetric Kagome ferromagnet. Sci. Adv. 7, eabf1467 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic Kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019).

    Article 

    Google Scholar
     

  • Yang, H. et al. Giant anomalous Nernst effect in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. Mater. 4, 024202 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Large anomalous Nernst effects at room temperature in Fe3Pt thin films. Adv. Mater. 35, 2301339 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Miura, A. et al. Observation of anomalous Ettingshausen effect and large transverse thermoelectric conductivity in permanent magnets. Appl. Phys. Lett. 115, 222403 (2019).

    Article 

    Google Scholar
     

  • Miura, A. et al. High-temperature dependence of anomalous Ettingshausen effect in SmCo5-type permanent magnets. Appl. Phys. Lett. 117, 082408 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, W. et al. Seebeck-driven transverse thermoelectric generation. Nat. Mater. 20, 463–467 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, J. et al. Giant second-order nonlinear Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 129, 186801 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Z. Z., Wang, C. M., Li, S., Lu, H. Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, D., Arora, A., Vignale, G. & Song, J. C. W. Anomalous skew-scattering nonlinear Hall effect and chiral photocurrents in PT-symmetric antiferromagnets. Phys. Rev. Lett. 131, 076601 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. & Xiao, D. Orbital magnetic quadrupole moment and nonlinear anomalous thermoelectric transport. Phys. Rev. B 98, 060402 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, C., Nandy, S., Taraphder, A. & Tewari, S. Nonlinear Nernst effect in bilayer WTe2. Phys. Rev. B 100, 245102 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X.-Q., Zhu, Z.-G., You, J.-S., Low, T. & Su, G. Topological nonlinear anomalous Nernst effect in strained transition metal dichalcogenides. Phys. Rev. B 99, 201410 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y.-L., Zhu, G.-H. & Yu, X.-Q. Nonlinear anomalous Nernst effect in strained graphene induced by trigonal warping. Phys. Rev. B 104, 195427 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Papaj, M. & Fu, L. Enhanced anomalous Nernst effect in disordered Dirac and Weyl materials. Phys. Rev. B 103, 075424 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ghahari, F. et al. Enhanced thermoelectric power in graphene: violation of the Mott relation by inelastic scattering. Phys. Rev. Lett. 116, 136802 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Small, J. P., Perez, K. M. & Kim, P. Modulation of thermoelectric power of individual carbon nanotubes. Phys. Rev. Lett. 91, 256801 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, J. et al. High thermoelectric power factor in graphene/hBN devices. Proc. Natl Acad. Sci. USA 113, 14272–14276 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, L. et al. Second harmonic generation induced by gate voltage oscillation in few layer MnBi2Te4. npj Quantum Mater. 9, 79 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Zeng, C., Nandy, S. & Tewari, S. Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime. Phys. Rev. Res. 2, 032066 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, C., Nandy, S. & Tewari, S. Chiral anomaly induced nonlinear Nernst and thermal Hall effects in Weyl semimetals. Phys. Rev. B 105, 125131 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Zhu, Z.-G. & Su, G. Quantum theory of nonlinear thermal response. Phys. Rev. B 106, 035148 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, C., Du, Z. Z. & Niu, Q. Theory of nonlinear Hall effects: modified semiclassics from quantum kinetics. Phys. Rev. B 100, 165422 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mehraeen, M. Quantum kinetic theory of quadratic responses. Phys. Rev. B 110, 174423 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makushko, P. et al. A tunable room-temperature nonlinear Hall effect in elemental bismuth thin films. Nat. Electron. 7, 207–215 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Choi, S. H. et al. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. A mass transfer technology for high-density two-dimensional device integration. Nat. Electron. 8, 135–146 (2025).


    Google Scholar
     

  • Min, L. et al. Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material. Nat. Commun. 14, 364 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, B. et al. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat. Commun. 15, 5513 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Giant nonlinear Hall effect induced ultrahigh rectification in a Weyl semiconductor. Adv. Electron. Mater. 11, 2400648 (2024).

    Article 

    Google Scholar
     



  • Source link

    effect field graphene Magnetic Nernst Nonlinear trilayer
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.