Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Observation of chiral emission enabled by collective guided resonances
    Nanotechnology

    Observation of chiral emission enabled by collective guided resonances

    big tee tech hubBy big tee tech hubJuly 5, 2025007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Observation of chiral emission enabled by collective guided resonances
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Miroshnichenko, A. E. & Kivshar, Y. S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

    Article 

    Google Scholar
     

  • Yan, J., Yuan, Z. & Gao, S. End and central plasmon resonances in linear atomic chains. Phys. Rev. Lett. 98, 216602 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Giannini, V., Vecchi, G. & Gómez Rivas, J. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett. 105, 266801 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett. 108, 193201 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macha, P. et al. Implementation of a quantum metamaterial using superconducting qubits. Nat. Commun. 5, 5146 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Anderson, P. W. More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972).

    Article 
    PubMed 

    Google Scholar
     

  • Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article 

    Google Scholar
     

  • Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article 

    Google Scholar
     

  • Chong, K. E. et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).

    Article 

    Google Scholar
     

  • Perrin, M., Lippi, G. & Politi, A. Optical gratings in the collective interaction between radiation and atoms, including recoil and collisions. J. Mod. Opt. 49, 419–429 (2002).

    Article 

    Google Scholar
     

  • Yu, D., Lupton, E. M., Liu, M., Liu, W. & Liu, F. Collective magnetic behavior of graphene nanohole superlattices. Nano Res. 1, 56–62 (2008).

    Article 

    Google Scholar
     

  • Tserkezis, C., Gantzounis, G. & Stefanou, N. Collective plasmonic modes in ordered assemblies of metallic nanoshells. J. Phys. Condens. Matter 20, 075232 (2008).

    Article 

    Google Scholar
     

  • Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article 

    Google Scholar
     

  • Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101–1103 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    Article 

    Google Scholar
     

  • Lei, T. et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4, e257 (2015).

    Article 

    Google Scholar
     

  • Xie, Z. et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 7, 18001 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Integrated optical vortex microcomb. Nat. Photon. 18, 625–631 (2024).

    Article 

    Google Scholar
     

  • Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photon. 14, 623–628 (2020).

    Article 

    Google Scholar
     

  • Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mohamed, S. et al. Controlling topology and polarization state of lasing photonic bound states in continuum. Laser Photon. Rev. 16, 2100574 (2022).

    Article 

    Google Scholar
     

  • Hwang, M.-S. et al. Vortex nanolaser based on a photonic disclination cavity. Nat. Photon. 18, 286–293 (2023).

    Article 

    Google Scholar
     

  • Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light Sci. Appl. 9, 179 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 612, 246–251 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 547–552 (2015).

    Article 

    Google Scholar
     

  • Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).

    Article 

    Google Scholar
     

  • Sun, W. et al. Lead halide perovskite vortex microlasers. Nat. Commun. 11, 4862 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors. Sci. Bull. 67, 359–366 (2022).

    Article 

    Google Scholar
     

  • Notomi, M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696–10705 (2000).

    Article 

    Google Scholar
     

  • Notomi, M. Negative refraction in photonic crystals. Opt. Quantum Electron. 34, 133–143 (2002).

    Article 

    Google Scholar
     

  • Liang, Y., Peng, C., Sakai, K., Iwahashi, S. & Noda, S. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach. Phys. Rev. B 84, 195119 (2011).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Analytical theory of finite-size photonic crystal slabs near the band edge. Opt. Express 30, 14033–14047 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ren, Y. et al. Low-threshold nanolasers based on miniaturized bound states in the continuum. Sci. Adv. 8, eade8817 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiersig, J., Kim, S. W. & Hentschel, M. Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78, 053809 (2008).

    Article 

    Google Scholar
     

  • Wiersig, J. et al. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A 84, 023845 (2011).

    Article 

    Google Scholar
     

  • Wiersig, J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84, 063828 (2011).

    Article 

    Google Scholar
     

  • Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang, T. X., Leykam, D. & Kivshar, Y. Photonic flatband resonances in multiple light scattering. Phys. Rev. Lett. 132, 043803 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang, T. X. et al. Collective nature of high-Q resonances in finite-size photonic metastructures. Phys. Rev. Res. 7, 013316 (2025).

    Article 

    Google Scholar
     

  • Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).

    Article 

    Google Scholar
     

  • Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    Article 

    Google Scholar
     

  • Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yoshida, M. et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature 618, 727–732 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Chiral collective emission enabled guided Observation resonances
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Working with @Generable and @Guide in Foundation Models

    July 18, 2025

    Navigating the labyrinth of forks

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.