Miroshnichenko, A. E. & Kivshar, Y. S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).
Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).
Yan, J., Yuan, Z. & Gao, S. End and central plasmon resonances in linear atomic chains. Phys. Rev. Lett. 98, 216602 (2007).
Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).
Giannini, V., Vecchi, G. & Gómez Rivas, J. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett. 105, 266801 (2010).
Dai, X. et al. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett. 108, 193201 (2012).
Macha, P. et al. Implementation of a quantum metamaterial using superconducting qubits. Nat. Commun. 5, 5146 (2014).
Anderson, P. W. More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972).
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).
Chong, K. E. et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).
Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).
Perrin, M., Lippi, G. & Politi, A. Optical gratings in the collective interaction between radiation and atoms, including recoil and collisions. J. Mod. Opt. 49, 419–429 (2002).
Yu, D., Lupton, E. M., Liu, M., Liu, W. & Liu, F. Collective magnetic behavior of graphene nanohole superlattices. Nano Res. 1, 56–62 (2008).
Tserkezis, C., Gantzounis, G. & Stefanou, N. Collective plasmonic modes in ordered assemblies of metallic nanoshells. J. Phys. Condens. Matter 20, 075232 (2008).
Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).
Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).
MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101–1103 (2002).
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).
Lei, T. et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4, e257 (2015).
Xie, Z. et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 7, 18001 (2018).
Chen, B. et al. Integrated optical vortex microcomb. Nat. Photon. 18, 625–631 (2024).
Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photon. 14, 623–628 (2020).
Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).
Mohamed, S. et al. Controlling topology and polarization state of lasing photonic bound states in continuum. Laser Photon. Rev. 16, 2100574 (2022).
Hwang, M.-S. et al. Vortex nanolaser based on a photonic disclination cavity. Nat. Photon. 18, 286–293 (2023).
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).
Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).
Zhang, Z. et al. Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light Sci. Appl. 9, 179 (2020).
Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).
Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 612, 246–251 (2022).
Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 547–552 (2015).
Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).
Sun, W. et al. Lead halide perovskite vortex microlasers. Nat. Commun. 11, 4862 (2020).
Chen, Z. et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors. Sci. Bull. 67, 359–366 (2022).
Notomi, M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696–10705 (2000).
Notomi, M. Negative refraction in photonic crystals. Opt. Quantum Electron. 34, 133–143 (2002).
Liang, Y., Peng, C., Sakai, K., Iwahashi, S. & Noda, S. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach. Phys. Rev. B 84, 195119 (2011).
Chen, Z. et al. Analytical theory of finite-size photonic crystal slabs near the band edge. Opt. Express 30, 14033–14047 (2022).
Ren, Y. et al. Low-threshold nanolasers based on miniaturized bound states in the continuum. Sci. Adv. 8, eade8817 (2022).
Wiersig, J., Kim, S. W. & Hentschel, M. Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78, 053809 (2008).
Wiersig, J. et al. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A 84, 023845 (2011).
Wiersig, J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84, 063828 (2011).
Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).
Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).
Hoang, T. X., Leykam, D. & Kivshar, Y. Photonic flatband resonances in multiple light scattering. Phys. Rev. Lett. 132, 043803 (2024).
Hoang, T. X. et al. Collective nature of high-Q resonances in finite-size photonic metastructures. Phys. Rev. Res. 7, 013316 (2025).
Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).
Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).
Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).
Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).
Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).
Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).
Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).
Yoshida, M. et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature 618, 727–732 (2023).