Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025

    ios – Differences in builds between Xcode 16.4 and Xcode 26

    October 13, 2025

    How to run RAG projects for better data analytics results

    October 13, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Operando X-ray characterization platform to unravel catalyst degradation under accelerated stress testing in CO2 electrolysis
    Nanotechnology

    Operando X-ray characterization platform to unravel catalyst degradation under accelerated stress testing in CO2 electrolysis

    big tee tech hubBy big tee tech hubMay 9, 2025007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Operando X-ray characterization platform to unravel catalyst degradation under accelerated stress testing in CO2 electrolysis
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article 

    Google Scholar
     

  • Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article 

    Google Scholar
     

  • Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rabiee, H. et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 14, 1959–2008 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ge, L. et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 8, 663–692 (2022).

    Article 
    CAS 

    Google Scholar
     

  • de Sousa, L., Benes, N. E. & Mul, G. Evaluating the effects of membranes, cell designs, and flow configurations on the performance of Cu-GDEs in converting CO2 to CO. ACS EST Eng. 2, 2034–2042 (2022).

    Article 

    Google Scholar
     

  • Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).

    Article 

    Google Scholar
     

  • Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M. et al. Sequential *CO management via controlling in situ reconstruction for efficient industrial-current-density CO2-to-C2+ electroreduction. Proc. Natl Acad. Sci. USA 120, e2302851120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Möller, T. et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy Environ. Sci. 14, 5995–6006 (2021).

    Article 

    Google Scholar
     

  • Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nwabara, U. O. et al. Towards accelerated durability testing protocols for CO2 electrolysis. J. Mater. Chem. A 8, 22557–22571 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Popović, S. et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59, 14736–14746 (2020).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. ACS Energy Lett. 7, 2884–2892 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, K., Kas, R., Smith, W. A. & Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13, 15132–15142 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vass, Á., Kormányos, A., Kószó, Z., Endrődi, B. & Janáky, C. Anode catalysts in CO2 electrolysis: challenges and untapped opportunities. ACS Catal. 12, 1037–1051 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. The capping agent is the key: structural alterations of Ag NPs during CO2 electrolysis probed in a zero-gap gas-flow configuration. J. Catal. 404, 371–382 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garg, S. et al. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. 16, 1631–1643 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Moss, A. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2022).

    Article 

    Google Scholar
     

  • Martens, I., Chattot, R. & Drnec, J. Decoupling catalyst aggregation, ripening, and coalescence processes inside operating fuel cells. J. Power Sources 521, 230851 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dorofeev, G. A., Streletskii, A. N., Povstugar, I. V., Protasov, A. V. & Elsukov, E. P. Determination of nanoparticle sizes by X-ray diffraction. Colloid J. 74, 675–685 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Martens, I. et al. X-ray transparent proton-exchange membrane fuel cell design for in situ wide and small angle scattering tomography. J. Power Sources 437, 226906 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Aßmann, P., Gago, A. S., Gazdzicki, P., Friedrich, K. A. & Wark, M. Toward developing accelerated stress tests for proton exchange membrane electrolyzers. Curr. Opin. Electrochem. 21, 225–233 (2020).

    Article 

    Google Scholar
     

  • Li, D. et al. Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14, 3393–3419 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Disch, J., Bohn, L., Metzler, L. & Vierrath, S. Strategies for the mitigation of salt precipitation in zero-gap CO2 electrolyzers producing CO. J. Mater. Chem. A 11, 7344–7357 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Joensen, B. Ó. et al. Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers. Joule 8, 1754–1771 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. Rigorous evaluation of liquid products in high-rate CO2/CO electrolysis. ACS Energy Lett. 7, 2595–2601 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Enriching surface-accessible CO2 in the zero-gap anion-exchange-membrane-based CO2 electrolyzer. Angew. Chem. Int. Ed. 62, e202214383 (2022).

    Article 

    Google Scholar
     

  • Zeradjanin, A. R., Narangoda, P., Spanos, I., Masa, J. & Schlögl, R. How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts? Curr. Opin. Electrochem. 30, 100797 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Graedel, T. E. Corrosion mechanisms for silver exposed to the atmosphere. J. Electrochem. Soc. 139, 1963 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Sachan, R. et al. Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv. Mater. 25, 2045–2050 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 142, 15438–15444 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Back, S., Yeom, M. S. & Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Clark, E. L. et al. Influence of atomic surface structure on the activity of Ag for the electrochemical reduction of CO2 to CO. ACS Catal. 9, 4006–4014 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Simultaneous SAXS/WAXS/UV–vis study of the nucleation and growth of nanoparticles: a test of classical nucleation theory. Langmuir 31, 11678–11691 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cofell, E. R. et al. Potential cycling of silver cathodes in an alkaline CO2 flow electrolyzer for accelerated stress testing and carbonate inhibition. ACS Appl. Energy Mater. 5, 12013–12021 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moss, A. et al. Versatile high energy X-ray transparent electrolysis cell for operando measurements. J. Power Sources 562, 232754 (2022).

    Article 

    Google Scholar
     

  • Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kieffer, J. & Karkoulis, D. PyFAI, a versatile library for azimuthal regrouping. J. Phys. Conf. Ser. 425, 202012 (2013).

    Article 

    Google Scholar
     

  • Jinschek, J. R. & Helveg, S. Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 1156–1168 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    accelerated catalyst characterization CO2 degradation electrolysis Operando Platform stress testing Unravel Xray
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Tailoring nanoscale interfaces for perovskite–perovskite–silicon triple-junction solar cells

    October 13, 2025

    Google unveils Gemini Enterprise to offer companies a more unified platform for AI innovation

    October 12, 2025

    A record-breaking anisotropic van der Waals crystal? – Physics World

    October 12, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025

    ios – Differences in builds between Xcode 16.4 and Xcode 26

    October 13, 2025

    How to run RAG projects for better data analytics results

    October 13, 2025

    MacBook Air deal: Save 10% Apple’s slim M4 notebook

    October 13, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Astaroth: Banking Trojan Abusing GitHub for Resilience

    October 13, 2025

    ios – Differences in builds between Xcode 16.4 and Xcode 26

    October 13, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.