Emin, D. Polarons (Cambridge Univ. Press, 2012).
Holstein, T. Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959).
Holstein, T. Studies of polaron motion: part II. The “small” polaron. Ann. Phys. 8, 343–389 (1959).
Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).
Heeger, A. J. Semiconducting polymers: the third generation. Chem. Soc. Rev. 39, 2354–2371 (2010).
Brédas, J. L. & Street, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985).
The Physics of Organic Superconductors and Conductors (Springer, 2008).
Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).
Buizza, L. R. V. & Herz, L. M. Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices. Adv. Mater. 33, 2007057 (2021).
Guo, X. & Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 19, 922–928 (2020).
Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).
Liu, Y., Gao, S., Zhang, X., Xin, J. H. & Zhang, C. Probing the nature of charge carriers in one-dimensional conjugated polymers: a review of the theoretical models, experimental trends, and thermoelectric applications. J. Mater. Chem. C. 11, 12–47 (2023).
Salje, E. K. H. et al. (eds) Polarons and Bipolarons in High-Tc Superconductors and Related Materials (Cambridge Univ. Press, 1995).
Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171 (1997).
Koepsell, J. et al. Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid. Science 374, 82–86 (2021).
Koschorreck, M. et al. Attractive and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).
Alexandrov, A. S. Polarons in Advanced Materials (Springer, 2007).
Alexandrov, A. S. & Devreese, J. T. Advances in Polaron Physics (Springer, 2010).
Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).
Mertelj, T., Kabanov, V. V. & Mihailovic, D. Charged particles on a two-dimensional lattice subject to anisotropic Jahn–Teller interactions. Phys. Rev. Lett. 94, 147003 (2005).
Perfetti, L. et al. Spectroscopic indications of polaronic carriers in the quasi-one-dimensional conductor (TaSe4)2I. Phys. Rev. Lett. 87, 216404 (2001).
Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).
Kruchinin, S. Multiband superconductors. Rev. Theor. Sci. 4, 165–178 (2016).
Mahan, G. D. Many-Particle Physics (Springer, 2013).
Sio, W. H., Verdi, C., Poncé, S. & Giustino, F. Polarons from first principles, without supercells. Phys. Rev. Lett. 122, 246403 (2019).
Sio, W. H., Verdi, C., Poncé, S. & Giustino, F. Ab initio theory of polarons: formalism and applications. Phys. Rev. B 99, 235139 (2019).
Sio, W. H. & Giustino, F. Polarons in two-dimensional atomic crystals. Nat. Phys. 19, 629–636 (2023).
Bhat, V., Callaway, C. P. & Risko, C. Computational approaches for organic semiconductors: from chemical and physical understanding to predicting new materials. Chem. Rev. 123, 7498–7547 (2023).
Anderson, M. et al. Displacement of polarons by vibrational modes in doped conjugated polymers. Phys. Rev. Mater. 1, 055604 (2017).
Reticcioli, M. et al. Polaron-driven surface reconstructions. Phys. Rev. X 7, 031053 (2017).
Guzelturk, B. et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).
Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).
Bozin, E. S. et al. Crystallization of polarons through charge and spin ordering transitions in 1T-TaS2. Nat. Commun. 14, 7055 (2023).
Bombile, J. H., Janik, M. J. & Milner, S. T. Polaron formation mechanisms in conjugated polymers. Phys. Chem. Chem. Phys. 20, 317–331 (2018).
Xu, J. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 371, 818–822 (2021).
Zhu, X. et al. Revealing intramolecular isotope effects with chemical-bond precision. J. Am. Chem. Soc. 145, 13839–13845 (2023).
Cirera, B. et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nanotechnol. 15, 437–443 (2020).
González-Herrero, H. et al. Atomic scale control and visualization of topological quantum phase transition in π-conjugated polymers driven by their length. Adv. Mater. 33, e2104495 (2021).
Datar, A., Bar-Sadan, M. & Ramasubramaniam, A. Interactions between transition-metal surfaces and MoS2 monolayers: implications for hydrogen evolution and CO2 reduction reactions. J. Phys. Chem. C. 124, 20116–20124 (2020).
Kivelson, S. & Heeger, A. J. First-order transition to a metallic state in polyacetylene: a strong-coupling polaronic metal. Phys. Rev. Lett. 55, 308–311 (1985).
Stafström, S. et al. Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys. Rev. Lett. 59, 1464–1467 (1987).
Pásztor, Á. et al. Multiband charge density wave exposed in a transition metal dichalcogenide. Nat. Commun. 12, 6037 (2021).
Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016).
Emin, D. Small polarons. Phys. Today 35, 34–40 (1982).
Yang, B. et al. Chemical enhancement and quenching in single-molecule tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 62, e202218799 (2023).
Zhang, C. et al. Chemical identification and bond control of π-skeletons in a coupling reaction. J. Am. Chem. Soc. 143, 9461–9467 (2021).
Hu, F. et al. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Methods 15, 194–200 (2018).
Köppel, H., Yarkony, D. R. & Barentzen, H. The Jahn-Teller effect: Fundamentals and implications for physics and chemistry (Springer, 2009).
Pouget, J. P. et al. X ray observation of 2kF and 4kF scatterings in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 37, 437–440 (1976).
Schäfer, J. et al. Unusual spectral behavior of charge-density waves with imperfect nesting in a quasi-one-dimensional metal. Phys. Rev. Lett. 91, 066401 (2003).
Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90, 011101 (2019).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Yakovkin, I. N. Quantum confinement in free Cu(111), Ag(111), and Au(111) layers and apparent splitting of surface bands. Surf. Sci. 691, 121501 (2020).
Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).
Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).
Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).
Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).
Peng, J. et al. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9, 122 (2018).
Zhang, Y., Dong, Z.-C. & Aizpurua, J. Theoretical treatment of single-molecule scanning Raman picoscopy in strongly inhomogeneous near fields. J. Raman Spectrosc. 52, 296–309 (2021).
Hu, W. et al. Identifying the structure of 4-chlorophenyl isocyanide adsorbed on Au(111) and Pt(111) surfaces by first-principles simulations of Raman spectra. Phys. Chem. Chem. Phys. 19, 32389–32397 (2017).
Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).
Meena, R., Li, G. & Casula, M. Ground-state properties of the narrowest zigzag graphene nanoribbon from quantum Monte Carlo and comparison with density functional theory. J. Chem. Phys. 156, 084112 (2022).
Tesch, R. & Kowalski, P. M. Hubbard U parameters for transition metals from first principles. Phys. Rev. B 105, 195153 (2022).
Wu, Y. et al. Polaron superlattices in n-doped single conjugated polymers. Zenodo (2025).
