A new framework explains direct transitions between ordered states, offering insights into real quantum materials

In this work, the researchers theoretically explore how quantum materials can transition continuously from one ordered state to another, for example, from a magnetic phase to a phase with crystalline or orientational order. Traditionally, such order‑to‑order transitions were thought to require fractionalisation, where particles effectively split into exotic components. Here, the team identifies a new route that avoids this complexity entirely.
Their mechanism relies on two renormalisation‑group fixed points in the system colliding and annihilating, which reshapes the flow of the system and removes the usual disordered phase. A separate critical fixed point, unaffected by this collision, then becomes the new quantum critical point linking the two ordered phases. This allows for a continuous, seamless transition without invoking fractionalised quasiparticles.
The authors show that this behaviour could occur in several real or realistic systems, including rare‑earth pyrochlore iridates, kagome quantum magnets, quantum impurity models and even certain versions of quantum chromodynamics. A striking prediction of the mechanism is a strong asymmetry in energy scales on the two sides of the transition, such as a much lower critical temperature and a smaller order parameter where the order emerges from fixed‑point annihilation.
This work reveals a previously unrecognised kind of quantum phase transition, expands the landscape beyond the usual Landau-Ginzburg-Wilson framework, which is the standard theory for phase transitions, and offers new ways to understand and test the behaviour of complex quantum systems.
Do you want to learn more about this topic?
Dynamical quantum phase transitions: a review by Markus Heyl (2018)
