Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Databricks Spatial Joins Now 17x Faster Out-of-the-Box

    December 27, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Cisco Meraki + PagerDuty Integration for Faster Incident Response

    December 27, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Artificial Intelligence»Securing private data at scale with differentially private partition selection
    Artificial Intelligence

    Securing private data at scale with differentially private partition selection

    big tee tech hubBy big tee tech hubSeptember 2, 2025003 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Securing private data at scale with differentially private partition selection
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


    Large, user-based datasets are invaluable for advancing AI and machine learning models. They drive innovation that directly benefits users through improved services, more accurate predictions, and personalized experiences. Collaborating on and sharing such datasets can accelerate research, foster new applications, and contribute to the broader scientific community. However, leveraging these powerful datasets also comes with potential data privacy risks.

    The process of identifying a specific, meaningful subset of unique items that can be shared safely from a vast collection based on how frequently or prominently they appear across many individual contributions (like finding all the common words used across a huge set of documents) is called “differentially private (DP) partition selection”. By applying differential privacy protections in partition selection, it’s possible to perform that selection in a way that prevents anyone from knowing whether any single individual’s data contributed a specific item to the final list. This is done by adding controlled noise and only selecting items that are sufficiently common even after that noise is included, ensuring individual privacy. DP is the first step in many important data science and machine learning tasks, including extracting vocabulary (or n-grams) from a large private corpus (a necessary step of many textual analysis and language modeling applications), analyzing data streams in a privacy preserving way, obtaining histograms over user data, and increasing efficiency in private model fine-tuning.

    In the context of massive datasets like user queries, a parallel algorithm is crucial. Instead of processing data one piece at a time (like a sequential algorithm would), a parallel algorithm breaks the problem down into many smaller parts that can be computed simultaneously across multiple processors or machines. This practice isn’t just for optimization; it’s a fundamental necessity when dealing with the scale of modern data. Parallelization allows the processing of vast amounts of information all at once, enabling researchers to handle datasets with hundreds of billions of items. With this, it’s possible to achieve robust privacy guarantees without sacrificing the utility derived from large datasets.

    In our recent publication, “Scalable Private Partition Selection via Adaptive Weighting”, which appeared at ICML2025, we introduce an efficient parallel algorithm that makes it possible to apply DP partition selection to various data releases. Our algorithm provides the best results across the board among parallel algorithms and scales to datasets with hundreds of billions of items, up to three orders of magnitude larger than those analyzed by prior sequential algorithms. To encourage collaboration and innovation by the research community, we are open-sourcing DP partition selection on GitHub.



    Source link

    Data differentially partition private Scale Securing Selection
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    This tiny chip could change the future of quantum computing

    December 27, 2025

    Why Enterprise AI Scale Stalls

    December 26, 2025

    Why Your Company Should Invest in AI Training for Employees Now

    December 25, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Databricks Spatial Joins Now 17x Faster Out-of-the-Box

    December 27, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Cisco Meraki + PagerDuty Integration for Faster Incident Response

    December 27, 2025

    This tiny chip could change the future of quantum computing

    December 27, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Databricks Spatial Joins Now 17x Faster Out-of-the-Box

    December 27, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.