Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Training a Model on Multiple GPUs with Data Parallelism

    December 28, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Single-layer waveguide displays using achromatic metagratings for full-colour augmented reality
    Nanotechnology

    Single-layer waveguide displays using achromatic metagratings for full-colour augmented reality

    big tee tech hubBy big tee tech hubMay 1, 2025027 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Single-layer waveguide displays using achromatic metagratings for full-colour augmented reality
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Kress, B. & Starner, T. A review of head-mounted displays (HMD) technologies and applications for consumer electronics. Photonic Appl. Aerosp. Commer. Harsh Environ. 8720, 62–74 (2013).

  • Olsson, M. I. Wearable device with input and output structures. US patent 20,130,044,042 (2011).

  • Zheng, Z., Liu, X., Li, H. & Xu, L. Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface. Appl. Opt. 49, 3661–3668 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, L., Li, Y., Jing, J., Feng, L. & Zhou, J. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express 26, 8550–8565 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. Y. & Kim, J. Prescription AR: a fully-customized prescription-embedded augmented reality display. Opt. Express 28, 6225–6241 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, H. & Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express 26, 17578–17590 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 85 (2017).

    Article 

    Google Scholar
     

  • Jang, C. et al. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. 36, 190 (2017).

    Article 

    Google Scholar
     

  • Kim, S. B. & Park, J. H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Opt. Lett. 43, 767–770 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maimone, A. et al. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans. Graph. 33, 89 (2014).

    Article 

    Google Scholar
     

  • Jeong, J. et al. Holographically printed freeform mirror array for augmented reality near-eye display. IEEE Photonics Technol. Lett. 32, 991–994 (2020).

    Article 

    Google Scholar
     

  • Lee, B., Jo, Y., Yoo, D. & Lee, J. Recent progresses of near-eye display for AR and VR. In Multimodal Sensing and Artificial Intelligence: Technologies and Applications II (ed. Stella, E.) vol. 11785, 1178503. International Society for Optics and Photonics (SPIE, 2021).

  • Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Society of Photo-Optical Instrumentation Engineers, 2020).

  • Levola, T. 7.1: Invited paper: novel diffractive optical components for near to eye displays. In SID Symposium Digest of Technical Papers, vol. 37, 64–67 (Wiley Online Library, 2006).

  • Kress, B. C. & Chatterjee, I. Waveguide combiners for mixed reality headsets: a nanophotonics design perspective. Nanophotonics 10, 41–74 (2021).

    Article 

    Google Scholar
     

  • Amitai, Y. Substrate-guided optical devices. US patent 7,672,055 (2010).

  • Ding, Y. et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023).

    Article 

    Google Scholar
     

  • Cheng, D., Wang, Y., Xu, C., Song, W. & Jin, G. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Opt. Express 22, 20705–20719 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, M. & Hua, H. Methods of optimizing and evaluating geometrical light guides with microstructure mirrors for augmented reality displays. Opt. Express 27, 5523–5543 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Äyräs, P., Saarikko, P. & Levola, T. Exit pupil expander with a large field of view based on diffractive optics. J. Soc. Inf. Disp. 17, 659–664 (2009).

    Article 

    Google Scholar
     

  • Yeoh, I. L. Wavelength multiplexing in waveguides. US patent 0,329,075 (2017).

  • Saarikko, P. Waveguide. US patent 0,231,568 (2016).

  • Yang, Q., Ding, Y. & Wu, S. T. Full-color, wide field-of-view single-layer waveguide for augmented reality displays. J. Soc. Inf. Disp. 32, 247–254 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Y., Li, Y., Yang, Q. & Wu, S. T. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays. J. Soc. Inf. Disp. 31, 380–386 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. A study of the field of view performance for full-color waveguide displays based on polarization volume gratings. Crystals 12, 1805 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Q., Zhang, S., Zhang, J. & Chen, C. P. Design of single-layer color echelle grating optical waveguide for augmented-reality display. Opt. Express 31, 3954–3969 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–797 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Z. L., Zhang, S. & Wang, G. P. Wide-angled off-axis achromatic metasurfaces for visible light. Opt. Express 24, 23118–23128 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escuti, M. J., Kim, J. & Kudenov, M. W. Controlling light with geometric-phase holograms. Opt. Photonics News 27, 22–29 (2016).

    Article 

    Google Scholar
     

  • Luo, W., Xiao, S., He, Q., Sun, S. & Zhou, L. Photonic spin Hall effect with nearly 100% efficiency. Adv. Opt. Mater. 3, 1102–1108 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Song, N. et al. Broadband achromatic metasurfaces for longwave infrared applications. Nanomaterials 11, 2760 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hecht, E. in Optics Ch. 4 (Pearson Edu. Press, 2017).

  • Azzam, R. M. A. Circular and near-circular polarization states of evanescent monochromatic light fields in total internal reflection. Appl. Opt. 50, 6272–6276 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, J. & Wu, S. T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021).

    Article 

    Google Scholar
     

  • Chen, W. T. et al. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nat. Commun. 14, 2544 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S., Kim, J., Kim, K., Jeong, M. & Rho, J. Anti-aliased metasurfaces beyond the Nyquist limit. Nat. Commun. 16, 411 (2025).

  • Brown, R. D. Transparent waveguide display. EP patent 2,733,517 (2014).

  • Grey, D. Exit pupil expanding diffractive optical waveguide device. US patent 10,359,635 (2019).

  • Cheng, D. et al. Design and manufacture AR head-mounted displays: a review and outlook. Light Adv. Manuf. 2, 350–369 (2021).


    Google Scholar
     

  • Liu, S. et al. Waveguide using grating coupler for uniform luminance and color AR display. In Optical Design and Testing X, vol. 11548, 74–80 (SPIE, 2022).

  • Ni, D. et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization. Opt. Express 30, 24523–24543 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wall, R. A. Waveguide-based displays with exit pupil expander. US patent 10,025,093 (2017).

  • Abovitz, R. Planar waveguide apparatus with diffraction element(s) and system employing same. US patent 9,671,566 (2015).

  • Maikisch, J. S. & Gaylord, T. K. Optimum parallel-face slanted surface-relief gratings. Appl. Opt. 46, 3674–3681 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, G. et al. High efficiency polarization-independent slanted grating for RGB bands. IEEE Photonics J. 13, 1–8 (2021).


    Google Scholar
     

  • Levola, T. Diffractive optics for virtual reality displays. J. Soc. Inf. Disp. 14, 467–475 (2006).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Slanted TiO2 metagratings for large-angle, high-efficiency anomalous refraction in the visible. Laser Photonics Rev. 17, 2200712 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, T., Cao, L., He, Q. & Jin, G. Slanted volume holographic gratings design based on rigorous coupled-wave analysis. In Holography, Diffractive Optics, and Applications V, vol. 8556, 105–112 (SPIE, 2012).

  • Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food 5, 293–300 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Amorphous to crystalline transition in nanoimprinted sol–gel titanium oxide metasurfaces. Adv. Mater. 37, 2405378 (2025).


    Google Scholar
     

  • Kim, J. et al. Wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater. Today 73, 9–15 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci. Appl. 12, 68 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, M. et al. Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 24, 535–543 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    achromatic augmented displays fullcolour metagratings reality Singlelayer waveguide
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Probing the fundamental nature of the Higgs Boson – Physics World

    December 28, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Training a Model on Multiple GPUs with Data Parallelism

    December 28, 2025

    3D-Printed Cinema Film Camera Oozes Vintage Vibes

    December 28, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Tracking Coastlines with RTK GNSS: Why It’s Crucial for Environmental Safety

    December 28, 2025

    Simplified management of Amazon MSK with natural language using Kiro CLI and Amazon MSK MCP Server

    December 28, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.