Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    How to Build Solana Trading Bots

    February 10, 2026

    Threat Observability Updates in Secure Firewall 10.0

    February 10, 2026

    Python 3.14 with Łukasz Langa

    February 10, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Super-moiré spin textures in twisted two-dimensional antiferromagnets
    Nanotechnology

    Super-moiré spin textures in twisted two-dimensional antiferromagnets

    big tee tech hubBy big tee tech hubFebruary 10, 2026017 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Super-moiré spin textures in twisted two-dimensional antiferromagnets
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 1–11 (2016).

    Article 

    Google Scholar
     

  • Jiang, W. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017).

    Article 

    Google Scholar
     

  • Lacroix, C., Mendels, P., Mila, F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory Vol. 164 (Springer, 2011).

  • Binder, K. & Young, A. P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magnet. Magnet. Materi. 509, 166711 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, 29–64 (1988).

    Article 

    Google Scholar
     

  • Karube, K. et al. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet. Sci. Adv. 4, 7043 (2018).

    Article 

    Google Scholar
     

  • Kurumaji, T. et al. Skyrmion lattice with a giant topological hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duine, R., Lee, K.-J., Parkin, S. S. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 4450 (2019).

    Article 

    Google Scholar
     

  • Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2d magnets. Science 374, 1140–1144 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer cri3. Nat. Nanotechnol. 17, 143–147 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, F., Chen, K. & Tong, Q. Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Res. 3, 013027 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akram, M. & Erten, O. Skyrmions in twisted van der Waals magnets. Phys. Rev. B 103, 140406 (2021).

    Article 

    Google Scholar
     

  • Zheng, F. Magnetic skyrmion lattices in a novel 2D-twisted bilayer magnet. Adv. Funct. Mater. 33, 2206923 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K.-M., Go, G., Park, M. J. & Kim, S. K. Emergence of stable meron quartets in twisted magnets. Nano Lett. 24, 74–81 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, H. et al. Evidence of non-collinear spin texture in magnetic moiré superlattices. Nat. Phys. 19, 1150–1155 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, G. et al. Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nat. Electron. 6, 434–442 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv. 5, 8897 (2019).

    Article 

    Google Scholar
     

  • Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Strong interactions and isospin symmetry breaking in a supermoiré lattice. Science 389, 736–740 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown Jr, W. F. The fundamental theorem of fine-ferromagnetic-particle theory. J. Appl. Phys. 39, 993–994 (1968).

    Article 

    Google Scholar
     

  • Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, M. et al. Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope. Nat. Commun. 14, 5259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, B. et al. Macroscopic tunneling probe of moiré spin textures in twisted CrI3. Nat. Commun. 15, 4982 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reith, P., Wang, X. R. & Hilgenkamp, H. Analysing magnetism using scanning squid microscopy. Rev. Sci. Instrum. 88, 123706 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nam, N. N. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    Article 

    Google Scholar
     

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer mote 2. Phys. Rev. Lett. 132, 036501 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Structural monoclinicity and its coupling to layered magnetism in few-layer CrI3. ACS Nano 15, 10444–10450 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantos-Prieto, F. et al. Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets. Nano Lett. 21, 3379–3385 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, S. H. et al. Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat. Commun. 13, 7826 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).

    Article 

    Google Scholar
     

  • Kato, Y. D., Okamura, Y., Hirschberger, M., Tokura, Y. & Takahashi, Y. Topological magneto-optical effect from skyrmion lattice. Nat. Commun. 14, 5416 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Topological Kerr effects in two-dimensional magnets with broken inversion symmetry. Nat. Phys. 20, 1145–1151 (2024)

  • Li, S. et al. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat. Commun. 15, 5712 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang, M. et al. Direct observation of twisted stacking domains in the van der Waals magnet CrI3. Nat. Commun. 15, 5925 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor crsbr. Nano Lett. 21, 3511–3517 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casas, B. W. et al. Coexistence of merons with skyrmions in the centrosymmetric van der Waals ferromagnet Fe5−xGeTe2. Adv. Mater. 35, 2212087 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Grebenchuk, S. et al. Topological spin textures in an insulating van der Waals ferromagnet. Adv. Mater. 36, 2311949 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zur, Y. et al. Magnetic imaging and domain nucleation in CrSBr down to the 2D limit. Adv. Mater. 35, 2307195 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Augustin, M., Jenkins, S., Evans, R. F. L., Novoselov, K. S. & Santos, E. J. G. Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3. Nat. Commun. 12, 185 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

    Article 

    Google Scholar
     

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article 

    Google Scholar
     

  • Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological magnon insulator in insulating ferromagnet. Phys. Rev. B 87, 144101 (2013).

    Article 

    Google Scholar
     

  • Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).

    Article 

    Google Scholar
     

  • Peng, R. All raw data corresponding to manuscript “Super-moiré spin textures in twisted 2D antiferromagnets”. Zenodo (2025).



  • Source link

    antiferromagnets spin Supermoiré textures twisted twodimensional
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Issue 86

    February 10, 2026

    The secret limits governing quantum relaxation – Physics World

    February 9, 2026

    Nanotoxicology Advances to Integrated Safety Frameworks

    February 8, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    How to Build Solana Trading Bots

    February 10, 2026

    Threat Observability Updates in Secure Firewall 10.0

    February 10, 2026

    Python 3.14 with Łukasz Langa

    February 10, 2026

    A Homeowner’s Guide to Powering the Home More Sustainably

    February 10, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    How to Build Solana Trading Bots

    February 10, 2026

    Threat Observability Updates in Secure Firewall 10.0

    February 10, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.