Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Cisco Meraki + PagerDuty Integration for Faster Incident Response

    December 27, 2025

    This tiny chip could change the future of quantum computing

    December 27, 2025

    Architecting Security for Agentic Capabilities in Chrome

    December 27, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Supramolecular polymerization through rotation of light-driven molecular motors
    Nanotechnology

    Supramolecular polymerization through rotation of light-driven molecular motors

    big tee tech hubBy big tee tech hubMay 25, 2025057 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Supramolecular polymerization through rotation of light-driven molecular motors
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 (1997).

    Article 

    Google Scholar
     

  • Astumian, R. D. How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fueled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pumm, A.-K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. An electric molecular motor. Nature 613, 280–286 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borsley, S., Leigh, D. & Roberts, B. M. W. Molecular ratchets and kinetic asymmetry: giving chemistry direction. Angew. Chem. Int. Ed. (2024).

    Article 

    Google Scholar
     

  • Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. (2024).

  • Wang, P.-L. et al. Transducing chemical energy through catalysis by an artificial molecular motor. Nature 637, 594–600 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moulin, E., Faour, L., Carmona‐Vargas, C. C. & Giuseppone, N. From molecular machines to stimuli‐responsive materials. Adv. Mater. 32, 1906036 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perrot, A., Moulin, E. & Giuseppone, N. Extraction of mechanical work from stimuli-responsive molecular systems and materials. Trends Chem. 3, 926–942 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrot, A., Wang, W., Buhler, E., Moulin, E. & Giuseppone, N. Bending actuation of hydrogels through rotation of light‐driven molecular motors. Angew. Chem. Int. Ed. 62, e202300263 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gao, C., Vargas Jentzsch, A., Moulin, E. & Giuseppone, N. Light-driven molecular whirligig. J. Am. Chem. Soc. 144, 9845–9852 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, W.-Z. et al. Light-driven molecular motors boost the selective transport of alkali metal ions through phospholipid bilayers. J. Am. Chem. Soc. 143, 15653–15660 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qutbuddin, Y. et al. Light‐activated synthetic rotary motors in lipid membranes induce shape changes through membrane expansion. Adv. Mater. (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Daou, D. et al. Out‐of‐equilibrium mechanical disruption of β‐amyloid‐like fibers using light‐driven molecular motors. Adv. Mater. (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Ariga, K., Yamauchi, Y., Mori, T. & Hill, J. P. 25th anniversary article: what can be done with the Langmuir–Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 25, 6477–6512 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliveira, O. N., Caseli, L. & Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chem. Rev. 122, 6459–6513 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ariga, K. Don’t forget Langmuir–Blodgett films 2020: interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 36, 7158–7180 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, I., Rabolt, J. F. & Stroeve, P. Dynamic monolayer behavior of a photo-responsive azobenzene surfactant. Colloids Surf. A 171, 167–174 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Backus, E. H. G., Kuiper, J. M., Engberts, J. B. F. N., Poolman, B. & Bonn, M. Reversible optical control of monolayers on water through photoswitchable lipids. J. Phys. Chem. B 115, 2294–2302 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando, E., Miyazaki, J., Morimoto, K., Nakahara, H. & Fukuda, K. J-aggregation of photochromic spiropyran in Langmuir–Blodgett films. Thin Solid Films 133, 21–28 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Nakazawa, T., Azumi, R., Sakai, H., Abe, M. & Matsumoto, M. Brewster angle microscopic observations of the langmuir films of amphiphilic spiropyran during compression and under UV illumination. Langmuir 20, 5439–5444 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossos, A. K. et al. Photochromism of amphiphilic dithienylethenes as Langmuir–Schaefer films. Langmuir 34, 10905–10912 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karthaus, O., Shimomura, M., Hioki, M., Tahara, R. & Nakamura, H. Reversible photomorphism in surface monolayers. J. Am. Chem. Soc. 118, 9174–9175 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, J., Štacko, P., Rudolf, P., Gengler, R. Y. N. & Feringa, B. L. Bidirectional photomodulation of surface tension in Langmuir films. Angew. Chem. Int. Ed. 56, 291–296 (2017).

    Article 
    CAS 

    Google Scholar
     

  • De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, N., Schädler, V. & Lehn, J.-M. Supramolecular polymers: Inherently dynamic materials. Acc. Chem. Res. 57, 349–361 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luviano, A. S., Campos-Terán, J., Langevin, D., Castillo, R. & Espinosa, G. Mechanical properties of DPPC–POPE mixed Langmuir monolayers. Langmuir 35, 16734–16744 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pallas, N. R. & Pethica, B. A. Liquid-expanded to liquid-condensed transition in lipid monolayers at the air/water interface. Langmuir 1, 509–513 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Davies, J. T. & Rideal, E. K. Interfacial Phenomena (Academic Press, 1963).

  • Dervichian, D. G. Changes of phase and transformations of higher order in monolayers. J. Chem. Phys. 7, 931–948 (1939).

    Article 
    CAS 

    Google Scholar
     

  • Carino, S. R. et al. Real-time grazing incidence X-ray diffraction studies of polymerizing n-octadecyltrimethoxysilane Langmuir monolayers at the air/water interface. J. Am. Chem. Soc. 123, 767–768 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giuseppone, N. & Walther, A. Out‐of‐Equilibrium (Supra)molecular Systems and Materials (Wiley, 2021);



  • Source link

    lightdriven molecular motors polymerization rotation supramolecular
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025

    Machine perception liquid biopsy identifies brain tumours via systemic immune and tumour microenvironment signature

    December 26, 2025

    a new look at magnetic excitations – Physics World

    December 25, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Cisco Meraki + PagerDuty Integration for Faster Incident Response

    December 27, 2025

    This tiny chip could change the future of quantum computing

    December 27, 2025

    Architecting Security for Agentic Capabilities in Chrome

    December 27, 2025

    ServiceNow has spent $12B+ on acquisitions and investments in 2025 amid concerns about revenue growth, projected to fall below 20% in 2026 without acquisitions (Brody Ford/Bloomberg)

    December 27, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Cisco Meraki + PagerDuty Integration for Faster Incident Response

    December 27, 2025

    This tiny chip could change the future of quantum computing

    December 27, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.