Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    ios – Background Assets Framework server connection problem

    December 27, 2025

    FaZe Clan’s future is uncertain after influencers depart

    December 27, 2025

    Airbus prepares tender for European sovereign cloud

    December 27, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Sustainable functional ceramics | Nature Nanotechnology
    Nanotechnology

    Sustainable functional ceramics | Nature Nanotechnology

    big tee tech hubBy big tee tech hubDecember 14, 20250126 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Sustainable functional ceramics | Nature Nanotechnology
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Ganguly, C. CERAMICS-as we enter the third millennium. Trans. Indian Ceram. Soc. 59, 63–67 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Pampuch, R. in An Introduction to Ceramics (eds Carpenter, B. et al.) Vol. 86, 1–17 (Springer, 2014).

  • Heimann, R. B. Classic and Advanced Ceramics: From Fundamentals to Applications (Wiley, 2010).

  • Furszyfer Del Rio, D. D. et al. Decarbonizing the ceramics industry: a systematic and critical review of policy options, developments and sociotechnical systems. Renew. Sustain. Energy Rev. 157, 112081 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Habashi, F. Refractories and the industrial revolution. Refractories 1, 14–18 (2012).


    Google Scholar
     

  • Greil, P. Advanced engineering ceramics. Adv. Eng. Mater. 4, 247–254 (2002).

    Article 

    Google Scholar
     

  • Ibn-Mohammed, T. et al. Decarbonising ceramic manufacturing: a techno-economic analysis of energy efficient sintering technologies in the functional materials sector. J. Eur. Ceram. Soc. 39, 5213–5235 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Oliveira, M. C., Iten, M., Cruz, P. L. & Monteiro, H. Review on energy efficiency progresses, technologies and strategies in the ceramic sector focusing on waste heat recovery. Energies 13, 6096 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iron And Steel Market Size, Share & Trends Analysis Report By Product (Iron Ore, Steel), By Region (NA, Europe, APAC, CSA, MEA), And Segment Forecasts, 2023–2030 (Grand View Research, 2021); https://www.grandviewresearch.com/industry-analysis/iron-steel-market

  • Cement Market Size, Share & Covid-19 Impact Analysis, by Tape (Portland, Blended, and Others), by Application (Residential, and Non-residential), and Regional Forecast, 2022–2029 (Fortune Business Insights, 2021); https://www.fortunebusinessinsights.com/industry-reports/cement-market-101825

  • Plastic Market Size, Share & Trends Analysis Report By Product (PE, PP, PU, PVC, PET, Polystyrene, ABS, PBT, PPO, Epoxy Polymers, LCP, PC, Polyamide), By Application, By End-use, By Region, And Segment Forecasts, 2023–2030 (Grand View Research, 2021); https://www.grandviewresearch.com/industry-analysis/global-plastics-market

  • Basic Chemicals Market by Product Type (Organic and Inorganic) and End User (Chemical Industry, Food & Beverages, Textiles, Pharmaceuticals, Pulp & Paper, Polymer, and Others): Global Opportunity Analysis and Industry Forecast, 2021–2030 (Allied Market Research, 2021); https://www.alliedmarketresearch.com/basic-chemicals-market-A14984

  • Aluminum Market By End User Industry (Transport, Building & Construction, Electrical Engineering, Consumer Goods, Foil & Packaging, Machinery & Equipment, Others), By Series (SERIES 1, SERIES 2, SERIES 3, SERIES 4, SERIES 5, SERIES 6, SERIES 7, SERIES 8), By Processing Method (Flat Rolled, Castings, Extrusions, Forgings, Pigments & Powder, Rod & Bar): Global Opportunity Analysis and Industry Forecast, 2021–2031 (Allied Market Research, 2021); https://www.alliedmarketresearch.com/aluminium-market

  • Isella, A. & Manca, D. GHG emissions by (petro)chemical processes and decarbonization priorities—a review. Energies 15, 7560 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bauer, F., Tilsted, J. P., Pfister, S., Oberschelp, C. & Kulionis, V. Mapping GHG emissions and prospects for renewable energy in the chemical industry. Curr. Opin. Chem. Eng. 39, 100881 (2023).

    Article 

    Google Scholar
     

  • Tracking Clean Energy Progress 2023 (International Energy Agency, 2023); https://www.iea.org/reports/tracking-clean-energy-progress-2023

  • Wright, L. & Chalasani, S. Steel GHG Emissions Reporting Guidance (RMI, 2023); https://rmi.org/wp-content/uploads/2022/09/steel_emissions_reporting_guidance.pdf

  • IPPC Climate Change 2022:Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022); https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf

  • Rissman, J. et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266, 114848 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Muthukannan, M. & Ganesh, A. S. C. The environmental impact caused by the cearmic industries and assessment methodologies. IJQR 13, 315–334 (2019).

    Article 

    Google Scholar
     

  • World Energy Outlook 2022 (International Energy Agency, 2022); https://www.iea.org/reports/world-energy-outlook-2022

  • Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 May 2023 establishing a carbon border adjustment mechanism (text with EEA relevance). OJ L. 130, 52–104 (2023).

  • Ceramics Market Size, Share & Trends Analysis Report By Product (Traditional, Advanced), By Application (Abrasives, Tiles), By End-use (Industrial, Medical), By Region, And Segment Forecasts, 2023–2030 (Grand View Research, 2023); https://www.grandviewresearch.com/industry-analysis/ceramics-market

  • Ceramic Tiles Market Size, Analysis, Industry Report [2023–2028] (Fortune Business Insigts, 2022); https://www.fortunebusinessinsights.com/ceramic-tiles-market-102377

  • Abrasives Market Size, Share & Growth Analysis Report, 2030 (Grand View Research, 2022); https://www.grandviewresearch.com/industry-analysis/abrasives-market

  • Sanitary Ware Market Size Global Report, 2022–2030 (Polaris Market Research, 2022); https://www.polarismarketresearch.com/index.php/industry-analysis/sanitary-ware-market

  • Solid State Battery Market—Global Industry Assessment & Forecast (Vantage Market Research, 2022); https://www.vantagemarketresearch.com

  • Advanced Ceramics Market Size, Share & COVID-19 Impact Analysis, By Material (TAlumina, Titanate, Silicon, Carbide, Silicon, Nitride, Others), End-Use (Electical & Electronics, Transportation, Medical, Chemical, Others), and Regional Forecast, 2021–2028 (Fortune Business Insigts, 2021); https://www.fortunebusinessinsights.com/advanced-ceramics-market-105073

  • Perovskite Solar Cell Market Size, Share & COVID-19 Impact Analysis, By Type (Rigid and Flexible), End-User (BIPV, Power Station, Transportation & Mobility, Consumer Electronics, Others) and Regional Forecast, 2023–2030 (Fortune Business Insigts, 2023); https://www.fortunebusinessinsights.com/industry-reports/perovskite-solar-cell-market-101556

  • Multi-Layer Ceramic Capacitor (MLCC) Market Outlook by Type (General Capacitor, Array, Serial Construction, Mega Cap), Rated Voltage Range (Low Range, Mid-Range, High Range), Dielectric Type (X7R, X5R, C0G, Y5V), End User (Electronics, Automotive, Industrial, Telecommunication)—Growth Forecast to 2030 (Prescient & Strategic Intelligence, 2022); https://www.psmarketresearch.com/market-analysis/multi-layer-ceramic-capacitor-mlcc-market

  • Solid Oxide Fuel Cell Market Size | Global Growth Trends, 2030 (Strategic Market Research, 2022); https://www.strategicmarketresearch.com/market-report/solid-oxide-fuel-cell-market

  • Global battery market size by technology. Statista (2022).

  • The battery cell component opportunity in Europe and North America. McKinsey & Company (2024).

  • Raabe, D., Tasan, C. C. & Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 575, 64–74 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Defferriere, T., Klotz, D., Gonzalez-Rosillo, J. C., Rupp, J. L. M. & Tuller, H. L. Photo-enhanced ionic conductivity across grain boundaries in polycrystalline ceramics. Nat. Mater. 21, 438–444 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Defferriere, T., Helal, A. S., Li, J., Rupp, J. L. M. & Tuller, H. L. Ionic conduction-based polycrystalline oxide gamma ray detection—radiation-ionic effects. Adv. Mater. 36, 2309253 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K. J., Balaish, M., Wadaguchi, M., Kong, L. & Rupp, J. L. M. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bérardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).

    Article 

    Google Scholar
     

  • Pérez-Tomás, A., Mingorance, A., Tanenbaum, D. & Lira-Cantú, M. in The Future of Semiconductor Oxides in Next-Generation Solar Cells (ed. Lira-Cantu, M.) 267–356 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-811165-9.00008-9

  • Kong, L., Williams, P. J., Brushett, F. & Rupp, J. L. M. Unveiling coexisting battery-type and pseudocapacitive intercalation mechanisms in lithium titanate. Adv. Energy Mater. 15, e03080 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Abyzov, A. M. Aluminum oxide and alumina ceramics (review). Part 1. Properties of Al2O3 and commercial production of dispersed Al2O3. Refract. Ind. Ceram. 60, 24–32 (2019).

    Article 

    Google Scholar
     

  • Parikh, P. B. Alumina ceramics: engineering applications and domestic market potential. Trans. Indian Ceram. Soc. 54, 179–184 (1995).

    Article 
    CAS 

    Google Scholar
     

  • De Bortoli, L. S., Schabbach, L. M., Fredel, M. C., Hotza, D. & Henriques, B. Ecological footprint of biomaterials for implant dentistry: is the metal-free practice an eco-friendly shift? J. Clean. Prod. 213, 723–732 (2019).

    Article 

    Google Scholar
     

  • Viazzi, C., Bonino, J. P. & Ansart, F. Synthesis by sol–gel route and characterization of yttria stabilized zirconia coatings for thermal barrier applications. Surf. Coat. Technol. 201, 3889–3893 (2006).

    Article 
    CAS 

    Google Scholar
     

  • López-Gándara, C., Ramos, F. M. & Cirera, A. YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J. Sens. 2009, 258489 (2009).

    Article 

    Google Scholar
     

  • Ormerod, R. M. Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, K., Lee, T. H., Suh, J. M., Yoon, S.-H. & Jang, H. W. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C 7, 9782–9802 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Malik, M., Chan, K. H. & Azimi, G. Review on the synthesis of LiNixMnyCo1−x−yO2 (NMC) cathodes for lithium-ion batteries. Mater. Today Energy 28, 101066 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huo, H. & Janek, J. Solid-state batteries: from ‘all-solid’to ‘almost-solid’. Natl Sci. Rev. 10, nwad098 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balaish, M. et al. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K. J. & Rupp, J. L. M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries. Energy Environ. Sci. 13, 4930–4945 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pfenninger, R., Struzik, M., Garbayo, I., Stilp, E. & Rupp, J. L. M. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 4, 475–483 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Struzik, M., Garbayo, I., Pfenninger, R. & Rupp, J. L. M. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).

    Article 

    Google Scholar
     

  • Balaish, M. & Rupp, J. L. M. Widening the range of trackable environmental and health pollutants for Li-garnet-based sensors. Adv. Mater. 33, 2100314 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Balaish, M. & Rupp, J. L. M. Design of triple and quadruple phase boundaries and chemistries for environmental SO2 electrochemical sensing. J. Mater. Chem. A 9, 14691–14699 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Horne, R., Grant, T. & Verghese, K. Life Cycle Assessment: Principles, Practice, and Prospects (CSIRO, 2009).

  • Aluminium Sector Greenhouse Gas Emissions (International Aluminium Institute, 2023); https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/

  • Ma, Y., Preveniou, A., Kladis, A. & Pettersen, J. B. Circular economy and life cycle assessment of alumina production: simulation-based comparison of Pedersen and Bayer processes. J. Clean. Prod. 366, 132807 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Life-Cycle Inventory Data for Aluminium Production and Transformation Processes in Europe (European Aluminum, 2018); https://european-aluminium.eu/wp-content/uploads/2022/10/european-aluminium-environmental-profile-report-2018-executive-summary.pdf

  • Muthu, S. S. Assessment of Carbon Footprint in Different Industrial Sectors Vol. 1 (Springer, 2014); https://doi.org/10.1007/978-981-4560-41-2

  • Sun, X., Luo, X., Zhang, Z., Meng, F. & Yang, J. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles. J. Clean. Prod. 273, 123006 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rosa, D. M. Comparative Life-cycle Assessment of the Production of 3YSZysz by Co-precipitation Process and Emulsion Detonation Synthesis (Univ. Coimbra, 2022).

  • Smith, L., Ibn-Mohammed, T., Koh, S. C. L. & Reaney, I. M. Life cycle assessment and environmental profile evaluations of high volumetric efficiency capacitors. Appl. Energy 220, 496–513 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schreiber, A. et al. Oxide ceramic electrolytes for all-solid-state lithium batteries—cost-cutting cell design and environmental impact. Green. Chem. 25, 399–414 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Koltun, P. & Tharumarajah, A. Life cycle impact of rare earth elements. ISRN Metall. 2014, 1–10 (2014).

    Article 

    Google Scholar
     

  • Bauer, C. et al. Charging sustainable batteries. Nat. Sustain. 5, 176–178 (2022).

    Article 

    Google Scholar
     

  • Munjal, M. et al. Process cost analysis of performance challenges and their mitigations in sodium-ion battery cathode materials. Joule (2025).

  • Smith, L. et al. Comparative environmental profile assessments of commercial and novel material structures for solid oxide fuel cells. Appl. Energy 235, 1300–1313 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mankins, J. C. Technology readiness assessments: a retrospective. Acta Astronaut. 65, 1216–1223 (2009).

    Article 

    Google Scholar
     

  • Jouhara, H. et al. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 6, 268–289 (2018).

    Article 

    Google Scholar
     

  • Garofalo, E., Bevione, M., Cecchini, L., Mattiussi, F. & Chiolerio, A. Waste heat to power: technologies, current applications, and future potential. Energy Technol. 8, 2000413 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Delpech, B., Axcell, B. & Jouhara, H. A review on waste heat recovery from exhaust in the ceramics industry. E3S Web Conf. 22, 00034 (2017).

    Article 

    Google Scholar
     

  • Ibáñez-Forés, V., Bovea, M. D. & Azapagic, A. Assessing the sustainability of best available techniques (BAT): methodology and application in the ceramic tiles industry. J. Clean. Prod. 51, 162–176 (2013).

    Article 

    Google Scholar
     

  • Yüksek, İ, Öztaş, S. K. & Tahtalı, G. The evaluation of fired clay brick production in terms of energy efficiency: a case study in Turkey. Energy Effic. 13, 1473–1483 (2020).

    Article 

    Google Scholar
     

  • Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050 (Department of Energy and Climate Change and the Department for Business, Innovation and Skills, 2015).

  • Wei, M., McMillan, C. A. & De La Rue Du Can, S. Electrification of industry: potential, challenges and outlook. Curr. Sustain. Renew. Energy Rep. 6, 140–148 (2019).


    Google Scholar
     

  • Tromans, D. Mineral comminution: energy efficiency considerations. Miner. Eng. 21, 613–620 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Mining Industry of the Future Fiscal Year 2004 Annual Report, Industrial Technologies Program, US Department of Energy, Energy Efficiency and Renewable Energy, February (Department of Energy, 2005); https://www1.eere.energy.gov/manufacturing/resources/mining/pdfs/mining_fy2004.pdf

  • Valery, W. & Jankovic, A. The future of comminution. In Proc. 34th IOC on Mining and Metallurgy (University of Belgrade, Technical Faculty, 2002).

  • Rahaman, M. N. Ceramic Processing and Sintering (CRC Press, 2017); https://doi.org/10.1201/9781315274126

  • Santos, T., Hennetier, L., Costa, V. A. F. & Costa, L. C. Microwave versus conventional porcelain firing: temperature measurement. J. Manuf. Process. 41, 92–100 (2019).

    Article 

    Google Scholar
     

  • Chojnacka, K. et al. Improvements in drying technologies—efficient solutions for cleaner production with higher energy efficiency and reduced emission. J. Clean. Prod. 320, 128706 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Al-Shakarchi, E. K. Dielectric properties of BaTiO3-ceramic prepared by freeze drying method. J. Korean Phys. Soc. 57, 245–250 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Raghupathy, B. P. C. & Binner, J. G. P. Spray freeze drying of YSZ nanopowder. J. Nanopart. Res. 14, 921 (2012).

    Article 

    Google Scholar
     

  • Mann, M. et al. Evaluation of scalable synthesis methods for aluminum-substituted Li7La3Zr2O12 solid electrolytes. Materials 14, 6809 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahaman, M. N. Sintering of Ceramics (CRC Press, 2008).

  • Schütte, P. Tantalum: Sustainability Information (Bundesanstalt für Geowissenschaften und Rohstoffe, 2021).

  • Lee, S.-S. & Hong, T.-W. Life cycle assessment for proton conducting ceramics synthesized by the sol–gel process. Materials 7, 6677–6685 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flegler, A. J., Burye, T. E., Yang, Q. & Nicholas, J. D. Cubic yttria stabilized zirconia sintering additive impacts: a comparative study. Ceram. Int. 40, 16323–16335 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hallmann, L., Ulmer, P., Reusser, E., Louvel, M. & Hämmerle, C. H. F. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J. Eur. Ceram. Soc. 32, 4091–4104 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ede, S. R. & Luo, Z. Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review. J. Mater. Chem. A 9, 20131–20163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • He, D., He, G., Jiang, H., Chen, Z. & Huang, M. Enhanced durability and activity of the perovskite electrocatalyst Pr0.5Ba0.5CoO3−δ by Ca doping for the oxygen evolution reaction at room temperature. Chem. Commun. 53, 5132–5135 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, M., Wang, H., Song, X. & Sun, F. Effect of doping level on residual stress, coating-substrate adhesion and wear resistance of boron-doped diamond coated tools. J. Manuf. Process. 88, 145–156 (2023).

    Article 

    Google Scholar
     

  • Zhang, Z., Meng, Y. & Xiao, D. Tri-sites co-doping: an efficient strategy towards the realization of 4.6V-LiCoO2 with cyclic stability. Energy Storage Mater. 56, 443–456 (2023).

    Article 

    Google Scholar
     

  • Ahaliabadeh, Z., Kong, X., Fedorovskaya, E. & Kallio, T. Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials. J. Power Sources 540, 231633 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Maier, J. Defect chemistry and ionic conductivity in thin films. Solid State Ion. 23, 59–67 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Seebauer, E. G. & Noh, K. W. Trends in semiconductor defect engineering at the nanoscale. Mater. Sci. Eng. R 70, 151–168 (2010).

    Article 

    Google Scholar
     

  • Lubomirsky, I. Mechanical properties and defect chemistry. Solid State Ion. 177, 1639–1642 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Loy, D. A. in Encyclopedia of Physical Science and Technology (ed. Meyers, R. A.) 257–276 (Elsevier, 2003); https://doi.org/10.1016/B0-12-227410-5/00697-9

  • Afyon, S., Krumeich, F. & Rupp, J. L. M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 3, 18636–18648 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dimesso, L. in Handbook of Sol–Gel Science and Technology (eds Klein, L. et al.) 1–22 (Springer, 2016); https://doi.org/10.1007/978-3-319-19454-7_123-1

  • Suchanek, W. L. & Riman, R. E. Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 45, 184–193 (2006).

  • Panek, R., Madej, J., Bandura, L. & Słowik, G. Recycling of waste solution after hydrothermal conversion of fly ash on a semi-technical scale for zeolite synthesis. Materials 14, 1413 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y., Chon, M., Thompson, C. V. & Rupp, J. L. M. Time–temperature–transformation (TTT) diagram of battery-grade Li-garnet electrolytes for low-temperature sustainable synthesis. Angew. Chem. Int. Ed. 135, e202304581 (2023).

    Article 

    Google Scholar
     

  • Košir, J., Mousavihashemi, S., Wilson, B. P., Rautama, E.-L. & Kallio, T. Comparative analysis on the thermal, structural, and electrochemical properties of Al-doped Li7La3Zr2O12 solid electrolytes through solid state and sol–gel routes. Solid State Ion. 380, 115943 (2022).

    Article 

    Google Scholar
     

  • Vijatovic, M. M., Bobic, J. D. & Stojanovic, B. D. History and challenges of barium titanate: Part I. Sci. Sinter. 40, 155–165 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Weinmann, S. et al. Stabilizing interfaces of all-ceramic composite cathodes for Li-garnet batteries. Adv. Energy Mater. 15, 2502280 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Guillon, O., Rheinheimer, W. & Bram, M. A perspective on emerging and future sintering technologies of ceramic materials. Adv. Eng. Mater. 25, 2201870 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Balaish, M. et al. Emerging processing guidelines for solid electrolytes in the era of oxide-based solid-state batteries. Chem. Soc. Rev. 54, 8925–9007 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thuault, A., Savary, E., Bazin, J. & Marinel, S. Microwave sintering of large size pieces with complex shape. J. Mater. Process. Technol. 214, 470–476 (2014).

    Article 

    Google Scholar
     

  • Sohrabi Baba Heidary, D., Lanagan, M. & Randall, C. A. Contrasting energy efficiency in various ceramic sintering processes. J. Eur. Ceram. Soc. 38, 1018–1029 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sutton, W. H. Microwave processing of ceramics—an overview. MRS Proc. 269, 3 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Singh, S., Gupta, D. & Jain, V. Recent applications of microwaves in materials joining and surface coatings. Proc. Inst. Mech. Eng. Part B 230, 603–617 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Guillon, O. et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Energy Mater. 16, 830–849 (2014).

    CAS 

    Google Scholar
     

  • Manière, C. et al. Spark plasma sintering and complex shapes: the deformed interfaces approach. Powder Technol. 320, 340–345 (2017).

    Article 

    Google Scholar
     

  • Guo, J. et al. Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26, 7115–7121 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Scheld, W. S. et al. Blacklight sintering of garnet-based composite cathodes. J. Eur. Ceram. Soc. 44, 3039–3048 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Perednis, D. & Gauckler, L. J. Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103–111 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Rupp, J. L. M., Scherrer, B., Harvey, A. S. & Gauckler, L. J. Crystallization and grain growth kinetics for precipitation-based ceramics: a case study on amorphous ceria thin films from spray pyrolysis. Adv. Funct. Mater. 19, 2790–2799 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hood, Z. D. et al. A sinter-free future for solid-state battery designs. Energy Environ. Sci. 15, 2927–2936 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Patidar, R., Burkitt, D., Hooper, K., Richards, D. & Watson, T. Slot-die coating of perovskite solar cells: an overview. Mater. Today Commun. 22, 100808 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schneller, T., Waser, R., Kosec, M. & Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films (Springer, 2013).

  • Kistler, S. F. & Schweizer, P. M. Liquid Film Coating: Scientific Principles and Their Technological Implications (Springer, 2012).

  • Derby, B. Inkjet printing ceramics: from drops to solid. J. Eur. Ceram. Soc. 31, 2543–2550 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wei, L. et al. Customizable solid-state batteries toward shape-conformal and structural power supplies. Mater. Today 58, 297–312 (2022).

    Article 

    Google Scholar
     

  • Zhu, C. et al. Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques. Nat. Commun. 14, 1300 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazarenus, T., Sun, Y., Exner, J., Kita, J. & Moos, R. Powder aerosol deposition as a method to produce garnet-type solid ceramic electrolytes: a study on electrochemical film properties and industrial applications. Energy Tech. 9, 2100211 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Aerosol deposition technology and its applications in batteries. Nano Mater. Sci. (2023).

  • Hofmann, M., Hofmann, H., Hagelüken, C. & Hool, A. Critical raw materials: a perspective from the materials science community. Sustain. Mater. Technol. 17, e00074 (2018).

    CAS 

    Google Scholar
     

  • Barteková, E. & Kemp, R. Critical Raw Material Strategies in Different World Regions (Maastricht Univesity, 2016); https://unu-merit.nl/publications/wppdf/2016/wp2016-005.pdf

  • Fortier, S. M., Hammarstrom, J. H., Ryker, S. J., Day, W. C. & Seal, R. R. USGS critical minerals review. Mining Engineering Magazine 35–47 (2023); https://apps.usgs.gov/minerals-information-archives/articles/USGS-Critical-Minerals-Review-2022.pdf

  • Grohol, M. & Veeh, C. Study on the Critical Raw Materials for the EU 2023 (European Commission, 2023); https://doi.org/10.2873/725585

  • Golroudbary, S. R., Calisaya-Azpilcueta, D. & Kraslawski, A. The life cycle of energy consumption and greenhouse gas emissions from critical minerals recycling: case of lithium-ion batteries. Procedia CIRP 80, 316–321 (2019).

    Article 

    Google Scholar
     

  • Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciez, R. E. & Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156 (2019).

    Article 

    Google Scholar
     

  • Wang, Y., Goikolea, E., de Larramendi, I. R., Lanceros-Méndez, S. & Zhang, Q. Recycling methods for different cathode chemistries—a critical review. J. Energy Storage 56, 106053 (2022).

    Article 

    Google Scholar
     

  • Azimi, G. & Chan, K. H. A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes. Resour. Conserv. Recycl. 209, 107825 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Azhari, L., Bong, S., Ma, X. & Wang, Y. Recycling for all solid-state lithium-ion batteries. Matter 3, 1845–1861 (2020).

    Article 

    Google Scholar
     

  • Beaudet, A., Larouche, F., Amouzegar, K., Bouchard, P. & Zaghib, K. Key challenges and opportunities for recycling electric vehicle battery materials. Sustainability 12, 5837 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jin, S. et al. A comprehensive review on the recycling of spent lithium-ion batteries: urgent status and technology advances. J. Clean. Prod. 340, 130535 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H.-J. et al. A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics 9, 1161 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Valente, A., Iribarren, D. & Dufour, J. End of life of fuel cells and hydrogen products: from technologies to strategies. Int. J. Hydrogen Energy 44, 20965–20977 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kikuta, K. et al. Low temperature recycling process for barium titanate based waste. J. Ceram. Soc. Jpn 114, 392–394 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Efficient electrocatalyst nanoparticles from upcycled class II capacitors. Nanomaterials 12, 2697 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, X., Niu, B. & Xu, Z. Mechanochemically transforming waste ceramic capacitors into self-doped BaTiO3 photocatalysts: an efficient approach for high-value e-waste recycling and hydrogen production. ACS Sustain. Chem. Eng. 12, 17272–17281 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Niu, B. & Xu, Z. Innovating e-waste recycling: from waste multi-layer ceramic capacitors to NbPb codoped and Ag–Pd–Sn–Ni loaded BaTiO3 nano-photocatalyst through one-step ball milling process. Sustain. Mater. Technol. 21, e00101 (2019).

    CAS 

    Google Scholar
     

  • Saffirio, S. et al. Hydrothermally-assisted recovery of yttria-stabilized zirconia (YSZ) from end-of-life solid oxide cells. Sustain. Mater. Technol. 33, e00473 (2022).

    CAS 

    Google Scholar
     

  • Yenesew, G. T., Quarez, E., Le gal la salle, A., Nicollet, C. & Joubert, O. Recycling and characterization of end-of-life solid oxide fuel/electrolyzer ceramic material cell components. Resour. Conserv. Recycl. 190, 106809 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Saffirio, S. et al. Recycling and reuse of ceramic materials from components of waste solid oxide cells (SOCs). Ceram. Int. 50, 34472–34477 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nasser, O. A. & Petranikova, M. Review of achieved purities after Li-ion batteries hydrometallurgical treatment and impurities effects on the cathode performance. Batteries 7, 60 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schwich, L. et al. Recycling strategies for ceramic all-solid-state batteries-Part I: Study on possible treatments in contrast to Li-ion battery recycling. Metals 10, 1523 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Waidha, A. I. et al. Recycling of all-solid-state Li-ion batteries: a case study of the separation of individual components within a system composed of LTO, LLZTO and NMC. ChemSusChem 16, e202202361 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, P. et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4, 2609–2626 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gaines, L., Dai, Q., Vaughey, J. T. & Gillard, S. Direct recycling R&D at the ReCell Center. Recycling 6, 31 (2021).

    Article 

    Google Scholar
     

  • Vukšić, M. et al. Evaluating recycling potential of waste alumina powder for ceramics production using response surface methodology. J. Mater. Res. Technol. 11, 866–874 (2021).

    Article 

    Google Scholar
     

  • Vukšić, M., Žmak, I., Ćurković, L. & Kocjan, A. Spark plasma sintering of dense alumina ceramics from industrial waste scraps. Open Ceram. 5, 100076 (2021).

    Article 

    Google Scholar
     

  • Sarner, S., Schreiber, A., Menzler, N. H. & Guillon, O. Recycling strategies for solid oxide cells. Adv. Energy Mater. 12, 2201805 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Niu, B. & Xu, Z. Application of chloride metallurgy and corona electrostatic separation for recycling waste multilayer ceramic capacitors. ACS Sustain. Chem. Eng. 5, 8390–8395 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T.-W., Liu, T. & Sun, H. Direct recycling for advancing sustainable battery solutions. Mater. Today Energy 38, 101434 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y., Chen, G., Liu, F., Yue, X. & Chen, Z. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett. 3, 1683–1692 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Qin, Z. et al. Recycling garnet-type electrolyte toward superior cycling performance for solid-state lithium batteries. Energy Storage Mater. 49, 360–369 (2022).

    Article 

    Google Scholar
     

  • Sugita, K. Historical Overview of Refractory Technology in the Steel Industry (Nippon Steel, 2008); https://www.nipponsteel.com/en/tech/report/nsc/pdf/n9803.pdf

  • Craddock, P. T. Scientific Investigation of Copies, Fakes and Forgeries (Elsevier/Butterworth-Heinemann, 2009).

  • Iron and Steel Technology Roadmap—Towards More Sustainable Steelmaking (International Energy Agency, 2020); https://www.iea.org/reports/iron-and-steel-technology-roadmap

  • Gürel, S. B. & Altun, A. Reactive alumina production for the refractory industry. Powder Technol. 196, 115–121 (2009).

    Article 

    Google Scholar
     

  • Ruys, A. J. Alumina Ceramics: Biomedical and Clinical Applications (Woodhead,2019).

  • Figiel, P., Rozmus, M. & Smuk, B. Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics. J. Achiev. Mater. Manuf. Eng. 48, 29–34 (2011).


    Google Scholar
     

  • Thomazini, D. et al. Alumina ceramics obtained by chemical synthesis using conventional and microwave sintering. Cerâmica 57, 45–49 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. Effect of SiO2 addition on the dielectric properties and microstructure of BaTiO3-based ceramics in reducing sintering. Int. J. Miner. Metall. Mater. 16, 124–127 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Brzozowski, E. & Castro, M. S. Grain growth control in Nb-doped BaTiO3. J. Mater. Process. Technol. 168, 464–470 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Deng, X. et al. Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 1059–1064 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. T. & Han, Y. H. Sintering of nanocrystalline BaTiO3. Ceram. Int. 30, 1719–1723 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, C. J., Jin, C. Q. & Wang, X. H. The fabrication of nanocrystalline BaTiO3 ceramics under high temperature and high pressure. J. Mater. Process. Technol. 209, 2033–2037 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Qi, J., Li, L., Wang, Y., Fan, Y. & Gui, Z. Yttrium doping behavior in BaTiO3 ceramics at different sintered temperature. Mater. Chem. Phys. 82, 423–427 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Amin, R. & Chiang, Y.-M. Characterization of electronic and ionic transport in Li1−xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1−xNi0.50Mn0.20Co0.30O2 (NMC523) as a function of Li content. J. Electrochem. Soc. 163, A1512–A1517 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ni, L., Wu, Z. & Zhang, C. Effect of sintering process on ionic conductivity of Li7−xLa3Zr2−xNbxO12 (x = 0, 0.2, 0.4, 0.6). Solid Electrolytes Mater. 14, 1671 (2021).

    CAS 

    Google Scholar
     

  • Hitz, G. T. et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Grissa, R., Payandeh, S., Heinz, M. & Battaglia, C. Impact of protonation on the electrochemical performance of Li7La3Zr2O12 garnets. ACS Appl. Mater. Interfaces 13, 14700–14709 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, E. J. et al. Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC). J. Eur. Ceram. Soc. 37, 3213–3217 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Z. & Wachsman, E. Mechanical properties of three-dimensional trilayered Li-garnet electrolyte for high-rate cycling in solid-state batteries. J. Am. Ceram. Soc. 107, 1481–1489 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Su, J. et al. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceram. Int. 45, 14991–14996 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Z. et al. Probing the mechanical properties of a Doped Li7La3Zr2O12 garnet thin electrolyte for solid-state batteries. ACS Appl. Mater. Interfaces 12, 24693–24700 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, M., Tang, X., Yin, H. & Peng, S. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165, 757–763 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Song, X. et al. High-temperature thermal properties of yttria fully stabilized zirconia ceramics. J. Rare Earth 29, 155–159 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gibson, I. R., Dransfield, G. P. & Gibson, I. R. Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. J. Mater. Sci. 33, 4297–4305 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Lazar, D. et al. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics. Dent. Mater. 24, 1676–1685 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, B. J., Sun, X. W. & Xu, C. X. Fabrication of zinc oxide nanostructures on gold-coated silicon substrate by thermal chemical reactions vapor transport deposition in air. Ceram. Int. 30, 1725–1729 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Bellis, M. Inventors of the spark plug. ToughtCo (2019).

  • Ho, J., Jow, T. R. & Boggs, S. Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 26, 20–25 (2010).

    Article 

    Google Scholar
     

  • Papadopoulos, C. Solid-State Electronic Devices: An Introduction (Springer, 2014).

  • Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Hall, S., Buiu, O., Z. Mitrovic, I., Lu, Y. & M. Davey, W. Review and perspective of high-k dielectrics on silicon. J. Telecommun. Inf. Technol. (2007).

  • Zhang, H. et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 8, 16648–16667 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Uchino, K. in Advanced Piezoelectric Materials (ed. Uchino, K.) 1–92 (Elsevier, 2017); https://doi.org/10.1016/B978-0-08-102135-4.00001-1

  • Zhu, Y. et al. Lithium-film ceramics for solid-state lithionic devices. Nat. Rev. Mater. 6, 313–331 (2020).

    Article 

    Google Scholar
     

  • Khosla, R. & Sharma, S. K. Integration of ferroelectric materials: an ultimate solution for next-generation computing and storage devices. ACS Appl. Electron. Mater. 3, 2862–2897 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fahrenholtz, W. G. & Hilmas, G. E. Ultra-high temperature ceramics: materials for extreme environments. Scr. Mater. 129, 94–99 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Colombo, P., Zordan, F. & Medvedovski, E. Ceramic–polymer composites for ballistic protection. Adv. Appl. Ceram. 105, 78–83 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chevalier, J. & Gremillard, L. Ceramics for medical applications: a picture for the next 20 years. J. Eur. Ceram. Soc. 29, 1245–1255 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Cap-and-trade program. California Air Resources Board (2015); https://ww2.arb.ca.gov/our-work/programs/cap-and-trade-program/about

  • About the EU ETS. European Commission (2024); https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en

  • Directive – 2009/29 – EN – EUR-Lex (European Union, 2009); https://eur-lex.europa.eu/eli/dir/2009/29/oj

  • Ceramics Roadmap to 2050—Continuing Our Path towards Climate Neutrality (CerameUnie, 2021); https://www.cerameunie.eu/media/zyqdwwwp/ceramic-roadmap-to-2050.pdf

  • U.S. state carbon pricing policies. Center for Climate and Energy Solutions (2025); https://www.c2es.org/document/us-state-carbon-pricing-policies/

  • Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2022 (United States Environmental Protection Agency, 2024); https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022

  • Total net greenhouse gas emission trends and projections in Europe. European Environment Agency (2023).

  • Current California GHG emission inventory data. California Air Resources Board (2025); https://ww2.arb.ca.gov/ghg-inventory-data

  • Hu, Y., Ren, S., Wang, Y. & Chen, X. Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China. Energy Econ. 85, 104590 (2020).

    Article 

    Google Scholar
     

  • China issues pilot rules for national carbon emission trading. The State Council (2021); http://english.www.gov.cn/statecouncil/ministries/202101/06/content_WS5ff5600fc6d0f72576943580.html

  • Carbon border adjustment mechanism. European Commission (2023).

  • Zhong, J. & Pei, J. Carbon border adjustment mechanism: a systematic literature review of the latest developments. Clim. Policy 24, 228–242 (2024).

    Article 

    Google Scholar
     

  • BMAS—Supply Chain Act. Federal Ministery of Labour and Social Affairs (2021); https://www.bmas.de/EN/Europe-and-the-World/International/Supply-Chain-Act/supply-chain-act.html

  • CSR—Supply Chain Act. Federal Ministery of Labour and Social Affairs (2022); https://www.csr-in-deutschland.de/EN/Business-Human-Rights/Supply-Chain-Act/supply-chain-act.html

  • Corporate sustainability due diligence. European Commission (2022); https://commission.europa.eu/business-economy-euro/doing-business-eu/corporate-sustainability-due-diligence_en

  • Nickel Unearthed: The Human and Climate Costs of Indonesia’s Nickel Industry (Climate Rights International, 2024);



  • Source link

    ceramics functional Nanotechnology Nature sustainable
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025

    Machine perception liquid biopsy identifies brain tumours via systemic immune and tumour microenvironment signature

    December 26, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    ios – Background Assets Framework server connection problem

    December 27, 2025

    FaZe Clan’s future is uncertain after influencers depart

    December 27, 2025

    Airbus prepares tender for European sovereign cloud

    December 27, 2025

    Indie App Spotlight: ‘Cannot Ignore’ brings full screen alarms to your calendar and more

    December 27, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    ios – Background Assets Framework server connection problem

    December 27, 2025

    FaZe Clan’s future is uncertain after influencers depart

    December 27, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.