Ganguly, C. CERAMICS-as we enter the third millennium. Trans. Indian Ceram. Soc. 59, 63–67 (2000).
Pampuch, R. in An Introduction to Ceramics (eds Carpenter, B. et al.) Vol. 86, 1–17 (Springer, 2014).
Heimann, R. B. Classic and Advanced Ceramics: From Fundamentals to Applications (Wiley, 2010).
Furszyfer Del Rio, D. D. et al. Decarbonizing the ceramics industry: a systematic and critical review of policy options, developments and sociotechnical systems. Renew. Sustain. Energy Rev. 157, 112081 (2022).
Habashi, F. Refractories and the industrial revolution. Refractories 1, 14–18 (2012).
Greil, P. Advanced engineering ceramics. Adv. Eng. Mater. 4, 247–254 (2002).
Ibn-Mohammed, T. et al. Decarbonising ceramic manufacturing: a techno-economic analysis of energy efficient sintering technologies in the functional materials sector. J. Eur. Ceram. Soc. 39, 5213–5235 (2019).
Oliveira, M. C., Iten, M., Cruz, P. L. & Monteiro, H. Review on energy efficiency progresses, technologies and strategies in the ceramic sector focusing on waste heat recovery. Energies 13, 6096 (2020).
Iron And Steel Market Size, Share & Trends Analysis Report By Product (Iron Ore, Steel), By Region (NA, Europe, APAC, CSA, MEA), And Segment Forecasts, 2023–2030 (Grand View Research, 2021); https://www.grandviewresearch.com/industry-analysis/iron-steel-market
Cement Market Size, Share & Covid-19 Impact Analysis, by Tape (Portland, Blended, and Others), by Application (Residential, and Non-residential), and Regional Forecast, 2022–2029 (Fortune Business Insights, 2021); https://www.fortunebusinessinsights.com/industry-reports/cement-market-101825
Plastic Market Size, Share & Trends Analysis Report By Product (PE, PP, PU, PVC, PET, Polystyrene, ABS, PBT, PPO, Epoxy Polymers, LCP, PC, Polyamide), By Application, By End-use, By Region, And Segment Forecasts, 2023–2030 (Grand View Research, 2021); https://www.grandviewresearch.com/industry-analysis/global-plastics-market
Basic Chemicals Market by Product Type (Organic and Inorganic) and End User (Chemical Industry, Food & Beverages, Textiles, Pharmaceuticals, Pulp & Paper, Polymer, and Others): Global Opportunity Analysis and Industry Forecast, 2021–2030 (Allied Market Research, 2021); https://www.alliedmarketresearch.com/basic-chemicals-market-A14984
Aluminum Market By End User Industry (Transport, Building & Construction, Electrical Engineering, Consumer Goods, Foil & Packaging, Machinery & Equipment, Others), By Series (SERIES 1, SERIES 2, SERIES 3, SERIES 4, SERIES 5, SERIES 6, SERIES 7, SERIES 8), By Processing Method (Flat Rolled, Castings, Extrusions, Forgings, Pigments & Powder, Rod & Bar): Global Opportunity Analysis and Industry Forecast, 2021–2031 (Allied Market Research, 2021); https://www.alliedmarketresearch.com/aluminium-market
Isella, A. & Manca, D. GHG emissions by (petro)chemical processes and decarbonization priorities—a review. Energies 15, 7560 (2022).
Bauer, F., Tilsted, J. P., Pfister, S., Oberschelp, C. & Kulionis, V. Mapping GHG emissions and prospects for renewable energy in the chemical industry. Curr. Opin. Chem. Eng. 39, 100881 (2023).
Tracking Clean Energy Progress 2023 (International Energy Agency, 2023); https://www.iea.org/reports/tracking-clean-energy-progress-2023
Wright, L. & Chalasani, S. Steel GHG Emissions Reporting Guidance (RMI, 2023); https://rmi.org/wp-content/uploads/2022/09/steel_emissions_reporting_guidance.pdf
IPPC Climate Change 2022:Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022); https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf
Rissman, J. et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266, 114848 (2020).
Muthukannan, M. & Ganesh, A. S. C. The environmental impact caused by the cearmic industries and assessment methodologies. IJQR 13, 315–334 (2019).
World Energy Outlook 2022 (International Energy Agency, 2022); https://www.iea.org/reports/world-energy-outlook-2022
Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 May 2023 establishing a carbon border adjustment mechanism (text with EEA relevance). OJ L. 130, 52–104 (2023).
Ceramics Market Size, Share & Trends Analysis Report By Product (Traditional, Advanced), By Application (Abrasives, Tiles), By End-use (Industrial, Medical), By Region, And Segment Forecasts, 2023–2030 (Grand View Research, 2023); https://www.grandviewresearch.com/industry-analysis/ceramics-market
Ceramic Tiles Market Size, Analysis, Industry Report [2023–2028] (Fortune Business Insigts, 2022); https://www.fortunebusinessinsights.com/ceramic-tiles-market-102377
Abrasives Market Size, Share & Growth Analysis Report, 2030 (Grand View Research, 2022); https://www.grandviewresearch.com/industry-analysis/abrasives-market
Sanitary Ware Market Size Global Report, 2022–2030 (Polaris Market Research, 2022); https://www.polarismarketresearch.com/index.php/industry-analysis/sanitary-ware-market
Solid State Battery Market—Global Industry Assessment & Forecast (Vantage Market Research, 2022); https://www.vantagemarketresearch.com
Advanced Ceramics Market Size, Share & COVID-19 Impact Analysis, By Material (TAlumina, Titanate, Silicon, Carbide, Silicon, Nitride, Others), End-Use (Electical & Electronics, Transportation, Medical, Chemical, Others), and Regional Forecast, 2021–2028 (Fortune Business Insigts, 2021); https://www.fortunebusinessinsights.com/advanced-ceramics-market-105073
Perovskite Solar Cell Market Size, Share & COVID-19 Impact Analysis, By Type (Rigid and Flexible), End-User (BIPV, Power Station, Transportation & Mobility, Consumer Electronics, Others) and Regional Forecast, 2023–2030 (Fortune Business Insigts, 2023); https://www.fortunebusinessinsights.com/industry-reports/perovskite-solar-cell-market-101556
Multi-Layer Ceramic Capacitor (MLCC) Market Outlook by Type (General Capacitor, Array, Serial Construction, Mega Cap), Rated Voltage Range (Low Range, Mid-Range, High Range), Dielectric Type (X7R, X5R, C0G, Y5V), End User (Electronics, Automotive, Industrial, Telecommunication)—Growth Forecast to 2030 (Prescient & Strategic Intelligence, 2022); https://www.psmarketresearch.com/market-analysis/multi-layer-ceramic-capacitor-mlcc-market
Solid Oxide Fuel Cell Market Size | Global Growth Trends, 2030 (Strategic Market Research, 2022); https://www.strategicmarketresearch.com/market-report/solid-oxide-fuel-cell-market
The battery cell component opportunity in Europe and North America. McKinsey & Company (2024).
Raabe, D., Tasan, C. C. & Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 575, 64–74 (2019).
Defferriere, T., Klotz, D., Gonzalez-Rosillo, J. C., Rupp, J. L. M. & Tuller, H. L. Photo-enhanced ionic conductivity across grain boundaries in polycrystalline ceramics. Nat. Mater. 21, 438–444 (2022).
Defferriere, T., Helal, A. S., Li, J., Rupp, J. L. M. & Tuller, H. L. Ionic conduction-based polycrystalline oxide gamma ray detection—radiation-ionic effects. Adv. Mater. 36, 2309253 (2024).
Kim, K. J., Balaish, M., Wadaguchi, M., Kong, L. & Rupp, J. L. M. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021).
Bérardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).
Pérez-Tomás, A., Mingorance, A., Tanenbaum, D. & Lira-Cantú, M. in The Future of Semiconductor Oxides in Next-Generation Solar Cells (ed. Lira-Cantu, M.) 267–356 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-811165-9.00008-9
Kong, L., Williams, P. J., Brushett, F. & Rupp, J. L. M. Unveiling coexisting battery-type and pseudocapacitive intercalation mechanisms in lithium titanate. Adv. Energy Mater. 15, e03080 (2025).
Abyzov, A. M. Aluminum oxide and alumina ceramics (review). Part 1. Properties of Al2O3 and commercial production of dispersed Al2O3. Refract. Ind. Ceram. 60, 24–32 (2019).
Parikh, P. B. Alumina ceramics: engineering applications and domestic market potential. Trans. Indian Ceram. Soc. 54, 179–184 (1995).
De Bortoli, L. S., Schabbach, L. M., Fredel, M. C., Hotza, D. & Henriques, B. Ecological footprint of biomaterials for implant dentistry: is the metal-free practice an eco-friendly shift? J. Clean. Prod. 213, 723–732 (2019).
Viazzi, C., Bonino, J. P. & Ansart, F. Synthesis by sol–gel route and characterization of yttria stabilized zirconia coatings for thermal barrier applications. Surf. Coat. Technol. 201, 3889–3893 (2006).
López-Gándara, C., Ramos, F. M. & Cirera, A. YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J. Sens. 2009, 258489 (2009).
Ormerod, R. M. Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003).
Hong, K., Lee, T. H., Suh, J. M., Yoon, S.-H. & Jang, H. W. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C 7, 9782–9802 (2019).
Malik, M., Chan, K. H. & Azimi, G. Review on the synthesis of LiNixMnyCo1−x−yO2 (NMC) cathodes for lithium-ion batteries. Mater. Today Energy 28, 101066 (2022).
Huo, H. & Janek, J. Solid-state batteries: from ‘all-solid’to ‘almost-solid’. Natl Sci. Rev. 10, nwad098 (2023).
Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).
Balaish, M. et al. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021).
Kim, K. J. & Rupp, J. L. M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries. Energy Environ. Sci. 13, 4930–4945 (2020).
Pfenninger, R., Struzik, M., Garbayo, I., Stilp, E. & Rupp, J. L. M. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 4, 475–483 (2019).
Struzik, M., Garbayo, I., Pfenninger, R. & Rupp, J. L. M. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).
Balaish, M. & Rupp, J. L. M. Widening the range of trackable environmental and health pollutants for Li-garnet-based sensors. Adv. Mater. 33, 2100314 (2021).
Balaish, M. & Rupp, J. L. M. Design of triple and quadruple phase boundaries and chemistries for environmental SO2 electrochemical sensing. J. Mater. Chem. A 9, 14691–14699 (2021).
Horne, R., Grant, T. & Verghese, K. Life Cycle Assessment: Principles, Practice, and Prospects (CSIRO, 2009).
Aluminium Sector Greenhouse Gas Emissions (International Aluminium Institute, 2023); https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/
Ma, Y., Preveniou, A., Kladis, A. & Pettersen, J. B. Circular economy and life cycle assessment of alumina production: simulation-based comparison of Pedersen and Bayer processes. J. Clean. Prod. 366, 132807 (2022).
Life-Cycle Inventory Data for Aluminium Production and Transformation Processes in Europe (European Aluminum, 2018); https://european-aluminium.eu/wp-content/uploads/2022/10/european-aluminium-environmental-profile-report-2018-executive-summary.pdf
Muthu, S. S. Assessment of Carbon Footprint in Different Industrial Sectors Vol. 1 (Springer, 2014); https://doi.org/10.1007/978-981-4560-41-2
Sun, X., Luo, X., Zhang, Z., Meng, F. & Yang, J. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles. J. Clean. Prod. 273, 123006 (2020).
Rosa, D. M. Comparative Life-cycle Assessment of the Production of 3YSZysz by Co-precipitation Process and Emulsion Detonation Synthesis (Univ. Coimbra, 2022).
Smith, L., Ibn-Mohammed, T., Koh, S. C. L. & Reaney, I. M. Life cycle assessment and environmental profile evaluations of high volumetric efficiency capacitors. Appl. Energy 220, 496–513 (2018).
Schreiber, A. et al. Oxide ceramic electrolytes for all-solid-state lithium batteries—cost-cutting cell design and environmental impact. Green. Chem. 25, 399–414 (2023).
Koltun, P. & Tharumarajah, A. Life cycle impact of rare earth elements. ISRN Metall. 2014, 1–10 (2014).
Bauer, C. et al. Charging sustainable batteries. Nat. Sustain. 5, 176–178 (2022).
Munjal, M. et al. Process cost analysis of performance challenges and their mitigations in sodium-ion battery cathode materials. Joule (2025).
Smith, L. et al. Comparative environmental profile assessments of commercial and novel material structures for solid oxide fuel cells. Appl. Energy 235, 1300–1313 (2019).
Mankins, J. C. Technology readiness assessments: a retrospective. Acta Astronaut. 65, 1216–1223 (2009).
Jouhara, H. et al. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 6, 268–289 (2018).
Garofalo, E., Bevione, M., Cecchini, L., Mattiussi, F. & Chiolerio, A. Waste heat to power: technologies, current applications, and future potential. Energy Technol. 8, 2000413 (2020).
Delpech, B., Axcell, B. & Jouhara, H. A review on waste heat recovery from exhaust in the ceramics industry. E3S Web Conf. 22, 00034 (2017).
Ibáñez-Forés, V., Bovea, M. D. & Azapagic, A. Assessing the sustainability of best available techniques (BAT): methodology and application in the ceramic tiles industry. J. Clean. Prod. 51, 162–176 (2013).
Yüksek, İ, Öztaş, S. K. & Tahtalı, G. The evaluation of fired clay brick production in terms of energy efficiency: a case study in Turkey. Energy Effic. 13, 1473–1483 (2020).
Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050 (Department of Energy and Climate Change and the Department for Business, Innovation and Skills, 2015).
Wei, M., McMillan, C. A. & De La Rue Du Can, S. Electrification of industry: potential, challenges and outlook. Curr. Sustain. Renew. Energy Rep. 6, 140–148 (2019).
Tromans, D. Mineral comminution: energy efficiency considerations. Miner. Eng. 21, 613–620 (2008).
Mining Industry of the Future Fiscal Year 2004 Annual Report, Industrial Technologies Program, US Department of Energy, Energy Efficiency and Renewable Energy, February (Department of Energy, 2005); https://www1.eere.energy.gov/manufacturing/resources/mining/pdfs/mining_fy2004.pdf
Valery, W. & Jankovic, A. The future of comminution. In Proc. 34th IOC on Mining and Metallurgy (University of Belgrade, Technical Faculty, 2002).
Rahaman, M. N. Ceramic Processing and Sintering (CRC Press, 2017); https://doi.org/10.1201/9781315274126
Santos, T., Hennetier, L., Costa, V. A. F. & Costa, L. C. Microwave versus conventional porcelain firing: temperature measurement. J. Manuf. Process. 41, 92–100 (2019).
Chojnacka, K. et al. Improvements in drying technologies—efficient solutions for cleaner production with higher energy efficiency and reduced emission. J. Clean. Prod. 320, 128706 (2021).
Al-Shakarchi, E. K. Dielectric properties of BaTiO3-ceramic prepared by freeze drying method. J. Korean Phys. Soc. 57, 245–250 (2010).
Raghupathy, B. P. C. & Binner, J. G. P. Spray freeze drying of YSZ nanopowder. J. Nanopart. Res. 14, 921 (2012).
Mann, M. et al. Evaluation of scalable synthesis methods for aluminum-substituted Li7La3Zr2O12 solid electrolytes. Materials 14, 6809 (2021).
Rahaman, M. N. Sintering of Ceramics (CRC Press, 2008).
Schütte, P. Tantalum: Sustainability Information (Bundesanstalt für Geowissenschaften und Rohstoffe, 2021).
Lee, S.-S. & Hong, T.-W. Life cycle assessment for proton conducting ceramics synthesized by the sol–gel process. Materials 7, 6677–6685 (2014).
Flegler, A. J., Burye, T. E., Yang, Q. & Nicholas, J. D. Cubic yttria stabilized zirconia sintering additive impacts: a comparative study. Ceram. Int. 40, 16323–16335 (2014).
Hallmann, L., Ulmer, P., Reusser, E., Louvel, M. & Hämmerle, C. H. F. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J. Eur. Ceram. Soc. 32, 4091–4104 (2012).
Ede, S. R. & Luo, Z. Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review. J. Mater. Chem. A 9, 20131–20163 (2021).
He, D., He, G., Jiang, H., Chen, Z. & Huang, M. Enhanced durability and activity of the perovskite electrocatalyst Pr0.5Ba0.5CoO3−δ by Ca doping for the oxygen evolution reaction at room temperature. Chem. Commun. 53, 5132–5135 (2017).
Lu, M., Wang, H., Song, X. & Sun, F. Effect of doping level on residual stress, coating-substrate adhesion and wear resistance of boron-doped diamond coated tools. J. Manuf. Process. 88, 145–156 (2023).
Zhang, Z., Meng, Y. & Xiao, D. Tri-sites co-doping: an efficient strategy towards the realization of 4.6V-LiCoO2 with cyclic stability. Energy Storage Mater. 56, 443–456 (2023).
Ahaliabadeh, Z., Kong, X., Fedorovskaya, E. & Kallio, T. Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials. J. Power Sources 540, 231633 (2022).
Maier, J. Defect chemistry and ionic conductivity in thin films. Solid State Ion. 23, 59–67 (1987).
Seebauer, E. G. & Noh, K. W. Trends in semiconductor defect engineering at the nanoscale. Mater. Sci. Eng. R 70, 151–168 (2010).
Lubomirsky, I. Mechanical properties and defect chemistry. Solid State Ion. 177, 1639–1642 (2006).
Loy, D. A. in Encyclopedia of Physical Science and Technology (ed. Meyers, R. A.) 257–276 (Elsevier, 2003); https://doi.org/10.1016/B0-12-227410-5/00697-9
Afyon, S., Krumeich, F. & Rupp, J. L. M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 3, 18636–18648 (2015).
Dimesso, L. in Handbook of Sol–Gel Science and Technology (eds Klein, L. et al.) 1–22 (Springer, 2016); https://doi.org/10.1007/978-3-319-19454-7_123-1
Suchanek, W. L. & Riman, R. E. Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 45, 184–193 (2006).
Panek, R., Madej, J., Bandura, L. & Słowik, G. Recycling of waste solution after hydrothermal conversion of fly ash on a semi-technical scale for zeolite synthesis. Materials 14, 1413 (2021).
Zhu, Y., Chon, M., Thompson, C. V. & Rupp, J. L. M. Time–temperature–transformation (TTT) diagram of battery-grade Li-garnet electrolytes for low-temperature sustainable synthesis. Angew. Chem. Int. Ed. 135, e202304581 (2023).
Košir, J., Mousavihashemi, S., Wilson, B. P., Rautama, E.-L. & Kallio, T. Comparative analysis on the thermal, structural, and electrochemical properties of Al-doped Li7La3Zr2O12 solid electrolytes through solid state and sol–gel routes. Solid State Ion. 380, 115943 (2022).
Vijatovic, M. M., Bobic, J. D. & Stojanovic, B. D. History and challenges of barium titanate: Part I. Sci. Sinter. 40, 155–165 (2008).
Weinmann, S. et al. Stabilizing interfaces of all-ceramic composite cathodes for Li-garnet batteries. Adv. Energy Mater. 15, 2502280 (2025).
Guillon, O., Rheinheimer, W. & Bram, M. A perspective on emerging and future sintering technologies of ceramic materials. Adv. Eng. Mater. 25, 2201870 (2023).
Balaish, M. et al. Emerging processing guidelines for solid electrolytes in the era of oxide-based solid-state batteries. Chem. Soc. Rev. 54, 8925–9007 (2025).
Thuault, A., Savary, E., Bazin, J. & Marinel, S. Microwave sintering of large size pieces with complex shape. J. Mater. Process. Technol. 214, 470–476 (2014).
Sohrabi Baba Heidary, D., Lanagan, M. & Randall, C. A. Contrasting energy efficiency in various ceramic sintering processes. J. Eur. Ceram. Soc. 38, 1018–1029 (2018).
Sutton, W. H. Microwave processing of ceramics—an overview. MRS Proc. 269, 3 (1992).
Singh, S., Gupta, D. & Jain, V. Recent applications of microwaves in materials joining and surface coatings. Proc. Inst. Mech. Eng. Part B 230, 603–617 (2016).
Guillon, O. et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Energy Mater. 16, 830–849 (2014).
Manière, C. et al. Spark plasma sintering and complex shapes: the deformed interfaces approach. Powder Technol. 320, 340–345 (2017).
Guo, J. et al. Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26, 7115–7121 (2016).
Scheld, W. S. et al. Blacklight sintering of garnet-based composite cathodes. J. Eur. Ceram. Soc. 44, 3039–3048 (2024).
Perednis, D. & Gauckler, L. J. Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103–111 (2005).
Rupp, J. L. M., Scherrer, B., Harvey, A. S. & Gauckler, L. J. Crystallization and grain growth kinetics for precipitation-based ceramics: a case study on amorphous ceria thin films from spray pyrolysis. Adv. Funct. Mater. 19, 2790–2799 (2009).
Hood, Z. D. et al. A sinter-free future for solid-state battery designs. Energy Environ. Sci. 15, 2927–2936 (2022).
Patidar, R., Burkitt, D., Hooper, K., Richards, D. & Watson, T. Slot-die coating of perovskite solar cells: an overview. Mater. Today Commun. 22, 100808 (2020).
Schneller, T., Waser, R., Kosec, M. & Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films (Springer, 2013).
Kistler, S. F. & Schweizer, P. M. Liquid Film Coating: Scientific Principles and Their Technological Implications (Springer, 2012).
Derby, B. Inkjet printing ceramics: from drops to solid. J. Eur. Ceram. Soc. 31, 2543–2550 (2011).
Wei, L. et al. Customizable solid-state batteries toward shape-conformal and structural power supplies. Mater. Today 58, 297–312 (2022).
Zhu, C. et al. Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques. Nat. Commun. 14, 1300 (2023).
Nazarenus, T., Sun, Y., Exner, J., Kita, J. & Moos, R. Powder aerosol deposition as a method to produce garnet-type solid ceramic electrolytes: a study on electrochemical film properties and industrial applications. Energy Tech. 9, 2100211 (2021).
Wang, X. et al. Aerosol deposition technology and its applications in batteries. Nano Mater. Sci. (2023).
Hofmann, M., Hofmann, H., Hagelüken, C. & Hool, A. Critical raw materials: a perspective from the materials science community. Sustain. Mater. Technol. 17, e00074 (2018).
Barteková, E. & Kemp, R. Critical Raw Material Strategies in Different World Regions (Maastricht Univesity, 2016); https://unu-merit.nl/publications/wppdf/2016/wp2016-005.pdf
Fortier, S. M., Hammarstrom, J. H., Ryker, S. J., Day, W. C. & Seal, R. R. USGS critical minerals review. Mining Engineering Magazine 35–47 (2023); https://apps.usgs.gov/minerals-information-archives/articles/USGS-Critical-Minerals-Review-2022.pdf
Grohol, M. & Veeh, C. Study on the Critical Raw Materials for the EU 2023 (European Commission, 2023); https://doi.org/10.2873/725585
Golroudbary, S. R., Calisaya-Azpilcueta, D. & Kraslawski, A. The life cycle of energy consumption and greenhouse gas emissions from critical minerals recycling: case of lithium-ion batteries. Procedia CIRP 80, 316–321 (2019).
Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).
Ciez, R. E. & Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156 (2019).
Wang, Y., Goikolea, E., de Larramendi, I. R., Lanceros-Méndez, S. & Zhang, Q. Recycling methods for different cathode chemistries—a critical review. J. Energy Storage 56, 106053 (2022).
Azimi, G. & Chan, K. H. A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes. Resour. Conserv. Recycl. 209, 107825 (2024).
Azhari, L., Bong, S., Ma, X. & Wang, Y. Recycling for all solid-state lithium-ion batteries. Matter 3, 1845–1861 (2020).
Beaudet, A., Larouche, F., Amouzegar, K., Bouchard, P. & Zaghib, K. Key challenges and opportunities for recycling electric vehicle battery materials. Sustainability 12, 5837 (2020).
Jin, S. et al. A comprehensive review on the recycling of spent lithium-ion batteries: urgent status and technology advances. J. Clean. Prod. 340, 130535 (2022).
Kim, H.-J. et al. A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics 9, 1161 (2020).
Valente, A., Iribarren, D. & Dufour, J. End of life of fuel cells and hydrogen products: from technologies to strategies. Int. J. Hydrogen Energy 44, 20965–20977 (2019).
Kikuta, K. et al. Low temperature recycling process for barium titanate based waste. J. Ceram. Soc. Jpn 114, 392–394 (2006).
Xu, J. et al. Efficient electrocatalyst nanoparticles from upcycled class II capacitors. Nanomaterials 12, 2697 (2022).
Gao, X., Niu, B. & Xu, Z. Mechanochemically transforming waste ceramic capacitors into self-doped BaTiO3 photocatalysts: an efficient approach for high-value e-waste recycling and hydrogen production. ACS Sustain. Chem. Eng. 12, 17272–17281 (2024).
Niu, B. & Xu, Z. Innovating e-waste recycling: from waste multi-layer ceramic capacitors to NbPb codoped and Ag–Pd–Sn–Ni loaded BaTiO3 nano-photocatalyst through one-step ball milling process. Sustain. Mater. Technol. 21, e00101 (2019).
Saffirio, S. et al. Hydrothermally-assisted recovery of yttria-stabilized zirconia (YSZ) from end-of-life solid oxide cells. Sustain. Mater. Technol. 33, e00473 (2022).
Yenesew, G. T., Quarez, E., Le gal la salle, A., Nicollet, C. & Joubert, O. Recycling and characterization of end-of-life solid oxide fuel/electrolyzer ceramic material cell components. Resour. Conserv. Recycl. 190, 106809 (2023).
Saffirio, S. et al. Recycling and reuse of ceramic materials from components of waste solid oxide cells (SOCs). Ceram. Int. 50, 34472–34477 (2024).
Nasser, O. A. & Petranikova, M. Review of achieved purities after Li-ion batteries hydrometallurgical treatment and impurities effects on the cathode performance. Batteries 7, 60 (2021).
Schwich, L. et al. Recycling strategies for ceramic all-solid-state batteries-Part I: Study on possible treatments in contrast to Li-ion battery recycling. Metals 10, 1523 (2020).
Waidha, A. I. et al. Recycling of all-solid-state Li-ion batteries: a case study of the separation of individual components within a system composed of LTO, LLZTO and NMC. ChemSusChem 16, e202202361 (2023).
Xu, P. et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4, 2609–2626 (2020).
Gaines, L., Dai, Q., Vaughey, J. T. & Gillard, S. Direct recycling R&D at the ReCell Center. Recycling 6, 31 (2021).
Vukšić, M. et al. Evaluating recycling potential of waste alumina powder for ceramics production using response surface methodology. J. Mater. Res. Technol. 11, 866–874 (2021).
Vukšić, M., Žmak, I., Ćurković, L. & Kocjan, A. Spark plasma sintering of dense alumina ceramics from industrial waste scraps. Open Ceram. 5, 100076 (2021).
Sarner, S., Schreiber, A., Menzler, N. H. & Guillon, O. Recycling strategies for solid oxide cells. Adv. Energy Mater. 12, 2201805 (2022).
Niu, B. & Xu, Z. Application of chloride metallurgy and corona electrostatic separation for recycling waste multilayer ceramic capacitors. ACS Sustain. Chem. Eng. 5, 8390–8395 (2017).
Wang, T.-W., Liu, T. & Sun, H. Direct recycling for advancing sustainable battery solutions. Mater. Today Energy 38, 101434 (2023).
Shi, Y., Chen, G., Liu, F., Yue, X. & Chen, Z. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett. 3, 1683–1692 (2018).
Qin, Z. et al. Recycling garnet-type electrolyte toward superior cycling performance for solid-state lithium batteries. Energy Storage Mater. 49, 360–369 (2022).
Sugita, K. Historical Overview of Refractory Technology in the Steel Industry (Nippon Steel, 2008); https://www.nipponsteel.com/en/tech/report/nsc/pdf/n9803.pdf
Craddock, P. T. Scientific Investigation of Copies, Fakes and Forgeries (Elsevier/Butterworth-Heinemann, 2009).
Iron and Steel Technology Roadmap—Towards More Sustainable Steelmaking (International Energy Agency, 2020); https://www.iea.org/reports/iron-and-steel-technology-roadmap
Gürel, S. B. & Altun, A. Reactive alumina production for the refractory industry. Powder Technol. 196, 115–121 (2009).
Ruys, A. J. Alumina Ceramics: Biomedical and Clinical Applications (Woodhead,2019).
Figiel, P., Rozmus, M. & Smuk, B. Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics. J. Achiev. Mater. Manuf. Eng. 48, 29–34 (2011).
Thomazini, D. et al. Alumina ceramics obtained by chemical synthesis using conventional and microwave sintering. Cerâmica 57, 45–49 (2011).
Lee, Y. Effect of SiO2 addition on the dielectric properties and microstructure of BaTiO3-based ceramics in reducing sintering. Int. J. Miner. Metall. Mater. 16, 124–127 (2009).
Brzozowski, E. & Castro, M. S. Grain growth control in Nb-doped BaTiO3. J. Mater. Process. Technol. 168, 464–470 (2005).
Deng, X. et al. Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 1059–1064 (2006).
Kim, H. T. & Han, Y. H. Sintering of nanocrystalline BaTiO3. Ceram. Int. 30, 1719–1723 (2004).
Xiao, C. J., Jin, C. Q. & Wang, X. H. The fabrication of nanocrystalline BaTiO3 ceramics under high temperature and high pressure. J. Mater. Process. Technol. 209, 2033–2037 (2009).
Qi, J., Li, L., Wang, Y., Fan, Y. & Gui, Z. Yttrium doping behavior in BaTiO3 ceramics at different sintered temperature. Mater. Chem. Phys. 82, 423–427 (2003).
Amin, R. & Chiang, Y.-M. Characterization of electronic and ionic transport in Li1−xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1−xNi0.50Mn0.20Co0.30O2 (NMC523) as a function of Li content. J. Electrochem. Soc. 163, A1512–A1517 (2016).
Ni, L., Wu, Z. & Zhang, C. Effect of sintering process on ionic conductivity of Li7−xLa3Zr2−xNbxO12 (x = 0, 0.2, 0.4, 0.6). Solid Electrolytes Mater. 14, 1671 (2021).
Hitz, G. T. et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019).
Grissa, R., Payandeh, S., Heinz, M. & Battaglia, C. Impact of protonation on the electrochemical performance of Li7La3Zr2O12 garnets. ACS Appl. Mater. Interfaces 13, 14700–14709 (2021).
Cheng, E. J. et al. Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC). J. Eur. Ceram. Soc. 37, 3213–3217 (2017).
Fu, Z. & Wachsman, E. Mechanical properties of three-dimensional trilayered Li-garnet electrolyte for high-rate cycling in solid-state batteries. J. Am. Ceram. Soc. 107, 1481–1489 (2024).
Su, J. et al. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceram. Int. 45, 14991–14996 (2019).
Fu, Z. et al. Probing the mechanical properties of a Doped Li7La3Zr2O12 garnet thin electrolyte for solid-state batteries. ACS Appl. Mater. Interfaces 12, 24693–24700 (2020).
Han, M., Tang, X., Yin, H. & Peng, S. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165, 757–763 (2007).
Song, X. et al. High-temperature thermal properties of yttria fully stabilized zirconia ceramics. J. Rare Earth 29, 155–159 (2011).
Gibson, I. R., Dransfield, G. P. & Gibson, I. R. Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. J. Mater. Sci. 33, 4297–4305 (1998).
Lazar, D. et al. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics. Dent. Mater. 24, 1676–1685 (2008).
Chen, B. J., Sun, X. W. & Xu, C. X. Fabrication of zinc oxide nanostructures on gold-coated silicon substrate by thermal chemical reactions vapor transport deposition in air. Ceram. Int. 30, 1725–1729 (2004).
Ho, J., Jow, T. R. & Boggs, S. Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 26, 20–25 (2010).
Papadopoulos, C. Solid-State Electronic Devices: An Introduction (Springer, 2014).
Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).
Hall, S., Buiu, O., Z. Mitrovic, I., Lu, Y. & M. Davey, W. Review and perspective of high-k dielectrics on silicon. J. Telecommun. Inf. Technol. (2007).
Zhang, H. et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 8, 16648–16667 (2020).
Uchino, K. in Advanced Piezoelectric Materials (ed. Uchino, K.) 1–92 (Elsevier, 2017); https://doi.org/10.1016/B978-0-08-102135-4.00001-1
Zhu, Y. et al. Lithium-film ceramics for solid-state lithionic devices. Nat. Rev. Mater. 6, 313–331 (2020).
Khosla, R. & Sharma, S. K. Integration of ferroelectric materials: an ultimate solution for next-generation computing and storage devices. ACS Appl. Electron. Mater. 3, 2862–2897 (2021).
Fahrenholtz, W. G. & Hilmas, G. E. Ultra-high temperature ceramics: materials for extreme environments. Scr. Mater. 129, 94–99 (2017).
Colombo, P., Zordan, F. & Medvedovski, E. Ceramic–polymer composites for ballistic protection. Adv. Appl. Ceram. 105, 78–83 (2006).
Chevalier, J. & Gremillard, L. Ceramics for medical applications: a picture for the next 20 years. J. Eur. Ceram. Soc. 29, 1245–1255 (2009).
Cap-and-trade program. California Air Resources Board (2015); https://ww2.arb.ca.gov/our-work/programs/cap-and-trade-program/about
About the EU ETS. European Commission (2024); https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en
Directive – 2009/29 – EN – EUR-Lex (European Union, 2009); https://eur-lex.europa.eu/eli/dir/2009/29/oj
Ceramics Roadmap to 2050—Continuing Our Path towards Climate Neutrality (CerameUnie, 2021); https://www.cerameunie.eu/media/zyqdwwwp/ceramic-roadmap-to-2050.pdf
U.S. state carbon pricing policies. Center for Climate and Energy Solutions (2025); https://www.c2es.org/document/us-state-carbon-pricing-policies/
Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2022 (United States Environmental Protection Agency, 2024); https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022
Total net greenhouse gas emission trends and projections in Europe. European Environment Agency (2023).
Current California GHG emission inventory data. California Air Resources Board (2025); https://ww2.arb.ca.gov/ghg-inventory-data
Hu, Y., Ren, S., Wang, Y. & Chen, X. Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China. Energy Econ. 85, 104590 (2020).
China issues pilot rules for national carbon emission trading. The State Council (2021); http://english.www.gov.cn/statecouncil/ministries/202101/06/content_WS5ff5600fc6d0f72576943580.html
Carbon border adjustment mechanism. European Commission (2023).
Zhong, J. & Pei, J. Carbon border adjustment mechanism: a systematic literature review of the latest developments. Clim. Policy 24, 228–242 (2024).
BMAS—Supply Chain Act. Federal Ministery of Labour and Social Affairs (2021); https://www.bmas.de/EN/Europe-and-the-World/International/Supply-Chain-Act/supply-chain-act.html
CSR—Supply Chain Act. Federal Ministery of Labour and Social Affairs (2022); https://www.csr-in-deutschland.de/EN/Business-Human-Rights/Supply-Chain-Act/supply-chain-act.html
Corporate sustainability due diligence. European Commission (2022); https://commission.europa.eu/business-economy-euro/doing-business-eu/corporate-sustainability-due-diligence_en
Nickel Unearthed: The Human and Climate Costs of Indonesia’s Nickel Industry (Climate Rights International, 2024);
