Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    T-glass, a type of ultrathin glass sheet used in advanced chips, is in short supply and largely comes from Nittobo, which is not adding capacity for months (Yang Jie/Wall Street Journal)

    February 8, 2026

    New data sources and spark_apply() capabilities, better interfaces for sparklyr extensions, and more!

    February 8, 2026

    Fake Dubai Crown Prince tracked to Nigerian mansion after $2.5M romance scam

    February 8, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers
    Nanotechnology

    Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers

    big tee tech hubBy big tee tech hubFebruary 7, 20260019 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science (2017).

  • Li, X. et al. Greenhouse gas emissions, energy efficiency, and cost of synthetic fuel production using electrochemical CO2 conversion and the Fischer–Tropsch process. Energy Fuels 30, 5980–5989 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85, 2309–2326 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008).

  • Varela, A. S. et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal. Today 288, 74–78 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ju, W. et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju, W. et al. Unraveling mechanistic reaction pathways of the electrochemical CO2 reduction on Fe–N–C single-site catalysts. ACS Energy Lett. 4, 1663–1671 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Brückner, S. et al. Failure mode diagnosis and stabilization of an efficient reverse-bias bipolar membrane CO2 to CO electrolyzer. Energy Environ. Sci. 18, 6577–6586 (2025).

    Article 

    Google Scholar
     

  • Brückner, S., Ju, W. & Strasser, P. Efficient forward-bias bipolar membrane CO2 electrolysis in absence of metal cations. Adv. Energy Mater. 15, 2500186 (2025).

    Article 

    Google Scholar
     

  • Brückner, S. et al. Design and diagnosis of high-performance CO2-to-CO electrolyzer cells. Nat. Chem. Eng. 1, 229–239 (2024).

    Article 

    Google Scholar
     

  • Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, C. & Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS Nano 15, 7975–8000 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. et al. Boosting *CO coverage on Cu octahedra enclosed by Cu(1 1 1) for efficient CO2 electroreduction to C2H5OH. Appl. Surf. Sci. (2024).

  • Wang, X. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moller, T. et al. Electrocatalytic CO2 reduction on CuOx nanocubes: tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. Int. Ed. 59, 17974–17983 (2020).

    Article 

    Google Scholar
     

  • Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lum, Y., Yue, B., Lobaccaro, P., Bell, A. T. & Ager, J. W. Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 121, 14191–14203 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lum, Y. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. et al. The in situ study of surface species and structures of oxide-derived copper catalysts for electrochemical CO2 reduction. Chem. Sci. 12, 5938–5943 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites. Appl. Surf. Sci. (2021).

  • Kim, B. et al. Trace-Level cobalt dopants enhance CO2 electroreduction and ethylene formation on copper. ACS Energy Lett. 8, 3356–3364 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yan, X. et al. Boosting CO2 electroreduction to C2+ products on fluorine-doped copper. Green Chem. 24, 1989–1994 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fang, M. et al. Aluminum-doped mesoporous copper oxide nanofibers enabling high-efficiency CO2 electroreduction to multicarbon products. Chem. Mater. 34, 9023–9030 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, P. et al. p–d orbital hybridization induced by P-block Metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. J. Am. Chem. Soc. 145, 4675–4682 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Möller, T., Filippi, M., Brückner, S., Ju, W. & Strasser, P. A CO2 electrolyzer tandem cell system for CO2–CO co-feed valorization in a Ni–N–C/Cu-catalyzed reaction cascade. Nat. Commun. 14, 5680 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. et al. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 5, 202–211 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dinh, C.-T., García de Arquer, F. P., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    Article 
    CAS 

    Google Scholar
     

  • García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Watanabe, M., Uchida, M. & Motoo, S. Preparation of highly dispersed Pt–Ru alloy clusters and the activity for the electrooxidation of methanol. J. Electroanal. Chem. 229, 395–406 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Hahn, R. & Schamel, A. A new storage concept with hydrogen production. Wiley Analytical Science (9 November 2023); https://analyticalscience.wiley.com/content/article-do/new-storage-concept-hydrogen-production

  • Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J., Xu, L. & Shen, B. Recent advances in tandem electrocatalysis of carbon dioxide: a review. Renew. Sustain. Energy Rev. 199, 114516 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J., Weiss, E. & Shao, Z. Advances in cutting-edge electrode engineering toward CO2 electrolysis at high current density and selectivity: a mini-review. Carbon Neutralization 1, 140–158 (2022).

    Article 

    Google Scholar
     

  • Cousins, L. S. & Creissen, C. E. Multiscale effects in tandem CO2 electrolysis to C2+ products. Nanoscale 16, 3915–3925 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudary, B. M., Chowdari, N. S., Madhi, S. & Kantam, M. L. A trifunctional catalyst for the synthesis of chiral diols. Angew. Chem. Int. Ed. 40, 4619–4623 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Csjernyik, G., Éll, A. H., Fadini, L., Pugin, B. & Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system. J. Org. Chem. 67, 1657–1662 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, N., Seo, S. D. & Shin, J. Y. One pot preparation of bicyclopentenones from propargyl malonates (and propargylsulfonamides) and allylic acetates by a tandem action of catalysts. J. Am. Chem. Soc. 122, 10220–10221 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Gioria, E. et al. Rational design of tandem catalysts using a core–shell structure approach. Nanoscale Adv. 3, 3454–3459 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Javed, M., Brösigke, G., Schomäcker, R. & Repke, J.-U. Influence of the distance between two catalysts for CO2 to dimethyl ether tandem reaction. Chem. Eng. Technol. 46, 1163–1169 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irshad, M. et al. Synthesis of n-butanol-rich C3+ alcohols by direct CO2 hydrogenation over a stable Cu–Co tandem catalyst. Appl. Catal. B 340, 123201 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Boosting C3H6 epoxidation via tandem photocatalytic H2O2 production over nitrogen-vacancy carbon nitride. ACS Catal. 13, 13101–13110 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Y. et al. Tandem photo-oxidation of methane to methanol at room temperature and pressure over Pt/TiO2. Nano Res. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, R. et al. Tandem photocatalysis of CO2 to C2H4 via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. 145, 8261–8270 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huo, H. et al. Nanoconfined tandem three-phase photocatalysis for highly selective CO2 reduction to ethanol. Chem. Sci. 15, 15134–15144 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, X. et al. Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2, 149–152 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. H. et al. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins. BMC Biotechnol. 9, 63 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wada, M. et al. Production of a doubly chiral compound, (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone, by two-step enzymatic asymmetric reduction. Appl. Environ. Microbiol. 69, 933–937 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siahrostami, S., Bjorketun, M. E., Strasser, P., Greeley, J. & Rossmeisl, J. Tandem cathode for proton exchange membrane fuel cells. Phys. Chem. Chem. Phys. 15, 9326–9334 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wasilke, J.-C., Obrey, S. J., Baker, R. T. & Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 105, 1001–1020 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei, C. & Gong, J. Tandem catalysis at nanoscale. Science 371, 1203–1204 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, J. et al. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta, A. et al. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO by selective Cu oxidation/reduction. Nano Energy (2020).

  • Chen, C., Zhang, B., Zhong, J. & Cheng, Z. Selective electrochemical CO2 reduction over highly porous gold films. J. Mater. Chem. A 5, 21955–21964 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Monteiro, M. C. O., Philips, M. F., Schouten, K. J. P. & Koper, M. T. M. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat. Commun. 12, 4943 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vos, R. E. & Koper, M. T. M. The effect of temperature on the cation-promoted electrochemical CO2 reduction on gold. ChemElectroChem 9, e202200239 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fan, T. et al. Electrochemically driven formation of sponge-like porous silver nanocubes toward efficient CO2 electroreduction to CO. ChemSusChem 13, 2677–2683 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salehi-Khojin, A. et al. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 117, 1627–1632 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sun, D., Xu, X., Qin, Y., Jiang, S. P. & Shao, Z. Rational design of Ag-based catalysts for the electrochemical CO2 Reduction to CO: a review. ChemSusChem 13, 39–58 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, D. et al. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 8, 1510–1519 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Huang, H. et al. Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform. Angew. Chem. Int. Ed. 56, 3594–3598 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, W., Kattel, S., Jiao, F. & Chen, J. G. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 9, 1802840 (2019).

    Article 

    Google Scholar
     

  • Kang, M. P. L., Kolb, M. J., Calle-Vallejo, F. & Yeo, B. S. The role of undercoordinated sites on zinc electrodes for CO2 reduction to CO. Adv. Funct. Mater. 32, 2111597 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Luo, W. et al. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B 273, 119060 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. J. Catal. 357, 154–162 (2018).

    Article 

    Google Scholar
     

  • Moller, T. et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019).

    Article 

    Google Scholar
     

  • Varela, A. S., Ju, W. & Strasser, P. Molecular nitrogen–carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. (2018).

  • Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xie, C. L., Niu, Z. Q., Kim, D., Li, M. F. & Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. B. et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter 4, 888–926 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. X. et al. Phase engineering of nanomaterials for clean energy and catalytic applications. Adv. Energy Mater. (2020).

  • Yu, J. et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv. Funct. Mater. 31, 2102151 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: classifying Cu facets. ACS Catal. (2019).

  • Huang, J., Mensi, M., Oveisi, E., Mantella, V. & Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Confined growth of silver–copper Janus nanostructures with 100 facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 34, e2110607 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lyu, Z. et al. Kinetically controlled synthesis of Pd–Cu Janus nanocrystals with enriched surface structures and enhanced catalytic activities toward CO2 reduction. J. Am. Chem. Soc. 143, 149–162 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, H. et al. Symmetry-broken Au–Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction. Adv. Funct. Mater. 31, 2101255 (2021).

    Article 
    CAS 

    Google Scholar
     

  • O’Mara, P. B. et al. Cascade reactions in nanozymes: spatially separated active sites inside Ag-core–porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 141, 14093–14097 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Cu–Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iyengar, P., Kolb, M. J., Pankhurst, J., Calle-Vallejo, F. & Buonsanti, R. Theory-guided enhancement of CO2 reduction to ethanol on Ag–Cu tandem catalysts via particle-size effects. ACS Catal. 11, 13330–13336 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ting, L. R. L. et al. Enhancing CO2 electroreduction to ethanol on copper–silver composites by opening an alternative catalytic pathway. ACS Catal. 10, 4059–4069 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 11, 2763–2767 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, H. et al. Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chem. 22, 71–84 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Luo, Y. et al. Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO2 to C2: Synergistic catalysis or tandem catalysis? J. Energy Chem. 92, 499–507 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B. et al. Tandem catalysis for enhanced CO2 to ethylene conversion in neutral media. Adv. Funct. Mater. 34, 2310029 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fu, J. et al. Unveiling the interfacial species synergy in promoting CO2 tandem electrocatalysis in near-neutral electrolyte. J. Am. Chem. Soc. 146, 23625–23632 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H.-L. et al. Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2. J. Am. Chem. Soc. 146, 1144–1152 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Z. et al. Hierarchical Ag–Cu interfaces promote C–C coupling in tandem CO2 electroreduction. Appl. Catal. B 325, 122310 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wei, P. et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat. Nanotechnol. 18, 299–306 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romero Cuellar, N. S. et al. Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities. J. CO2 Util. 36, 263–275 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju, W. et al. Electrochemical carbonyl reduction on single-site M–N–C catalysts. Commun Chem. (2023).

  • Heenen, H. H. et al. The mechanism for acetate formation in electrochemical CO2 reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy Environ. Sci. 15, 3978–3990 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kastlunger, G., Heenen, H. H. & Govindarajan, N. Combining first-principles kinetics and experimental data to establish guidelines for product selectivity in electrochemical CO2 reduction. ACS Catal. 13, 5062–5072 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhan, C. et al. Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol. Nat. Energy 9, 1485–1496 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, D.-L. et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel–nitrogen site/copper nanoparticle catalysts. Angew. Chem. Int. Ed. 60, 25485–25492 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M., Loiudice, A., Okatenko, V., Sharp, I. D. & Buonsanti, R. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C2 products in tandem electrocatalytic CO2 reduction. Chem. Sci. 14, 1097–1104 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, C. et al. Nanoscale management of CO transport in CO2 Electroreduction: boosting Faradaic efficiency to multicarbon products via nanostructured tandem electrocatalysts. Adv. Funct. Mater. 33, 2214992 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yan, T., Wang, P. & Sun, W. Y. Single-site metal–organic framework and copper foil tandem catalyst for highly selective CO2 Electroreduction to C2H4. Small 19, e2206070 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Akter, T., Pan, H. & Barile, C. J. Tandem electrocatalytic CO2 reduction inside a membrane with enhanced selectivity for ethylene. J. Phys. Chem. C 126, 10045–10052 (2022).

    Article 
    CAS 

    Google Scholar
     

  • She, X. et al. Tandem electrodes for carbon dioxide reduction into C2+ products at simultaneously high production efficiency and rate. Cell Rep. Phys. Sci. (2020).

  • Zhang, T., Li, Z., Zhang, J. & Wu, J. Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. J. Catal. 387, 163–169 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gurudayal et al. Sequential cascade electrocatalytic conversion of carbon dioxide to C–C coupled products. ACS Appl. Energy Mater. 2, 4551–4559 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Qiu, H., Li, J., Guo, L. & Ager, J. W. Tandem electrocatalytic CO2 reduction with efficient intermediate conversion over pyramid-textured Cu-Ag catalysts. ACS Appl. Mater. Interfaces 13, 40513–40521 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. Rigorous evaluation of liquid products in high-rate CO2/CO electrolysis. ACS Energy Lett. 7, 2595–2601 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Bromine-enhanced generation and epoxidation of ethylene in tandem CO2 electrolysis towards ethylene oxide. Angew. Chem. Int. Ed. 62, e202311570 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nat. Catal. 5, 185–192 (2022).

    Article 

    Google Scholar
     

  • Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theaker, N. et al. Heterogeneously catalyzed two-step cascade electrochemical reduction of CO2 to ethanol. Electrochim. Acta 274, 1–8 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wu, G. et al. Selective electroreduction of CO2 to n-propanol in two-step tandem catalytic system. Adv. Energy Mater. 12, 2202054 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Popovic, S. et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 59, 14736–14746 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vavra, J. et al. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction. Nat. Catal. 7, 89–97 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sassenburg, M., Iglesias van Montfort, H. P., Kolobov, N., Smith, W. A. & Burdyny, T. Bulk layering effects of Ag and Cu for tandem CO2 electrolysis. ChemSusChem 18, e202401769 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alkayyali, T. et al. Pathways to reduce the energy cost of carbon monoxide electroreduction to ethylene. Joule 8, 1478–1500 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sisler, J. et al. Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems. ACS Energy Lett. 6, 997–1002 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sassenburg, M., Kelly, M., Subramanian, S., Smith, W. A. & Burdyny, T. Zero-gap electrochemical CO2 reduction cells: challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett. 8, 321–331 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, K., Kas, R., Smith, W. A. & Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Küngas, R. Electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).

    Article 

    Google Scholar
     

  • Song, Y., Zhang, X., Xie, K., Wang, G. & Bao, X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Adv. Mater. 31, 1902033 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sahin, B. et al. Accumulation of liquid byproducts in an electrolyte as a critical factor that compromises long-term functionality of CO2-to-C2H4 Electrolysis. ACS Appl. Mater. Interfaces 15, 45844–45854 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Y. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth. 3, 1104–1112 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).



  • Source link

    Architectures atomic CO2 coupled Electrochemical electrolysers reduction Sites Tandem
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Nanotoxicology Advances to Integrated Safety Frameworks

    February 8, 2026

    Novel Spinel-Type Selenide Semiconductor ZnSc2Se4 and Solid Solution with Sulfide for Photovoltaics

    February 7, 2026

    Quantum states that won’t entangle – Physics World

    February 6, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    T-glass, a type of ultrathin glass sheet used in advanced chips, is in short supply and largely comes from Nittobo, which is not adding capacity for months (Yang Jie/Wall Street Journal)

    February 8, 2026

    New data sources and spark_apply() capabilities, better interfaces for sparklyr extensions, and more!

    February 8, 2026

    Fake Dubai Crown Prince tracked to Nigerian mansion after $2.5M romance scam

    February 8, 2026

    Nanotoxicology Advances to Integrated Safety Frameworks

    February 8, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    T-glass, a type of ultrathin glass sheet used in advanced chips, is in short supply and largely comes from Nittobo, which is not adding capacity for months (Yang Jie/Wall Street Journal)

    February 8, 2026

    New data sources and spark_apply() capabilities, better interfaces for sparklyr extensions, and more!

    February 8, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.