Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    MIT in the media: 2025 in review | MIT News

    December 29, 2025

    Marine Recovery Fund aims to boost nature and offshore wind development

    December 29, 2025

    How to Monitor AI Agents with MLflow?

    December 29, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Targeting CAD with a tumor microenvironment-responsive nano-heterojunction for synergistic induction of cuproptosis and inhibition of colorectal cancer progression | Journal of Nanobiotechnology
    Nanotechnology

    Targeting CAD with a tumor microenvironment-responsive nano-heterojunction for synergistic induction of cuproptosis and inhibition of colorectal cancer progression | Journal of Nanobiotechnology

    big tee tech hubBy big tee tech hubNovember 24, 20250117 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Targeting CAD with a tumor microenvironment-responsive nano-heterojunction for synergistic induction of cuproptosis and inhibition of colorectal cancer progression | Journal of Nanobiotechnology
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.


    Google Scholar
     

  • Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73(3):233–54. https://doi.org/10.3322/caac.21772.


    Google Scholar
     

  • Benson AB, Venook AP, Adam M, et al. NCCN guidelines® insights: rectal cancer, version 3.2024. J Natl Compr Canc Netw. 2024;22(6):366–75. https://doi.org/10.6004/jnccn.2024.0041.


    Google Scholar
     

  • Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386–422. https://doi.org/10.1093/annonc/mdw235.


    Google Scholar
     

  • Lenz HJ, Van Cutsem E, Luisa Limon M, et al. First-line Nivolumab plus low-dose Ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol. 2022;40(2):161–70. https://doi.org/10.1200/JCO.21.01015.


    Google Scholar
     

  • Tournigand C, André T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2023;41(19):3469–77. https://doi.org/10.1200/JCO.22.02774.


    Google Scholar
     

  • Hu S, Dai H, Li T, et al. Broad RTK-targeted therapy overcomes molecular heterogeneity-driven resistance to cetuximab via vectored immunoprophylaxis in colorectal cancer. Cancer Lett. 2016;382(1):32–43. https://doi.org/10.1016/j.canlet.2016.08.022.


    Google Scholar
     

  • Rm J, X Q, Cf L, et al. ARID1A mutations confer intrinsic and acquired resistance to cetuximab treatment in colorectal cancer. Nature communications. 2022;13(1). https://doi.org/10.1038/s41467-022-33172-5

  • Arafeh R, Shibue T, Dempster JM, Hahn WC, Vazquez F. The present and future of the cancer dependency map. Nat Rev Cancer. 2025;25(1):59–73. https://doi.org/10.1038/s41568-024-00763-x.


    Google Scholar
     

  • Copur MS, Tun SM, Duckert R. PD-1 blockade in mismatch repair-deficient rectal cancer. N Engl J Med. 2022;387(9):854–5. https://doi.org/10.1056/NEJMc2209706.


    Google Scholar
     

  • Fleischer JR, Schmitt AM, Haas G, et al. Molecular differences of angiogenic versus vessel co-opting colorectal cancer liver metastases at single-cell resolution. Mol Cancer. 2023;22(1):17. https://doi.org/10.1186/s12943-023-01713-1.


    Google Scholar
     

  • Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8(1):293. https://doi.org/10.1038/s41392-023-01536-y.


    Google Scholar
     

  • Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev. 2021;121(3):1746–803. https://doi.org/10.1021/acs.chemrev.0c00779.


    Google Scholar
     

  • Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. “Passive” nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev. 2023;52(21):7579–601. https://doi.org/10.1039/d2cs00998f.


    Google Scholar
     

  • Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med. 2021;18(2):336–51. https://doi.org/10.20892/j.issn.2095-3941.2020.0510.


    Google Scholar
     

  • Andrade F, Rafael D, Vilar-Hernández M, et al. Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. J Control Release. 2021;331:198–212. https://doi.org/10.1016/j.jconrel.2021.01.022.


    Google Scholar
     

  • Téllez T, Martin-García D, Redondo M, García-Aranda M. Clusterin expression in colorectal carcinomas. Int J Mol Sci. 2023;24(19):14641. https://doi.org/10.3390/ijms241914641.


    Google Scholar
     

  • Liu Y, Lin Y, Xiao H, et al. mRNA-responsive two-in-one nanodrug for enhanced anti-tumor chemo-gene therapy. J Control Release. 2024;369:765–74. https://doi.org/10.1016/j.jconrel.2024.04.007.


    Google Scholar
     

  • Dutt Y, Pandey RP, Dutt M, et al. Therapeutic applications of nanobiotechnology. J Nanobiotechnol. 2023;21(1):148. https://doi.org/10.1186/s12951-023-01909-z.


    Google Scholar
     

  • Yong J, Mellick AS, Whitelock J, Wang J, Liang K. A biomolecular toolbox for precision nanomotors. Adv Mater. 2023;35(15):e2205746. https://doi.org/10.1002/adma.202205746.


    Google Scholar
     

  • Yang X, Wu H. RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms. J Hematol Oncol. 2024;17(1):108. https://doi.org/10.1186/s13045-024-01631-9.


    Google Scholar
     

  • Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020;19(8):533–52. https://doi.org/10.1038/s41573-020-0068-6.


    Google Scholar
     

  • Hitchen N, Williams S, Desai J. Recent advances in therapeutic targeting of the KRAS pathway in cancer. Pharmacol Ther. 2025;273:108889. https://doi.org/10.1016/j.pharmthera.2025.108889.


    Google Scholar
     

  • Ye W, Lu X, Qiao Y, Ou WB. Activity and resistance to KRASG12C inhibitors in non-small cell lung cancer and colorectal cancer. Biochim Biophys Acta Rev Cancer. 2024;1879(3):189108. https://doi.org/10.1016/j.bbcan.2024.189108.


    Google Scholar
     

  • Jänne PA, Riely GJ, Gadgeel SM, et al. Adagrasib in non–small-cell lung cancer harboring a KRASG12C mutation. N Engl J Med. 2022;387(2):120–31. https://doi.org/10.1056/NEJMoa2204619.


    Google Scholar
     

  • Maruyama K, Shimizu Y, Nomura Y, et al. Mechanisms of KRAS inhibitor resistance in KRAS-mutant colorectal cancer harboring Her2 amplification and aberrant KRAS localization. NPJ Precis Oncol. 2025;9(1):4. https://doi.org/10.1038/s41698-024-00793-6.


    Google Scholar
     

  • Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF – a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol. 2024;21(3):224–47. https://doi.org/10.1038/s41571-023-00852-0.


    Google Scholar
     

  • Ruiz-Saenz A, Atreya CE, Wang C, et al. A reversible SRC-relayed COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in BRAFV600E colorectal tumors. Nat Cancer. 2023;4(2):240–56. https://doi.org/10.1038/s43018-022-00508-5.


    Google Scholar
     

  • Wan Q, Tavakoli L, Wang TY, et al. Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nat Commun. 2024;15(1):1442. https://doi.org/10.1038/s41467-024-45852-5.


    Google Scholar
     

  • Guo L, Yi X, Chen L, et al. Single-cell DNA sequencing reveals punctuated and gradual clonal evolution in hepatocellular carcinoma. Gastroenterology. 2022;162(1):238–52. https://doi.org/10.1053/j.gastro.2021.08.052.


    Google Scholar
     

  • Xie X, Zhang B, Peng J, et al. EGF-upregulated lncRNA ESSENCE promotes colorectal cancer growth through stabilizing CAD and ferroptosis defense. Research. 2025;8:0649. https://doi.org/10.34133/research.0649.


    Google Scholar
     

  • Li G, Xiao K, Li Y, Gao J, He S, Li T. CHIP promotes CAD ubiquitination and degradation to suppress the proliferation and colony formation of glioblastoma cells. Cell Oncol (Dordr). 2024;47(3):851–65. https://doi.org/10.1007/s13402-023-00899-2.


    Google Scholar
     

  • Pan J, Zhang M, Rao D, et al. CAD manipulates tumor intrinsic DHO/UBE4B/NF-κB pathway and fuels macrophage cross-talk, promoting HCC metastasis. Hepatology. Published online 2025 March 12 https://doi.org/10.1097/HEP.0000000000001304

  • Ma J, Zhao J, Zhang C, et al. Cleavage of CAD by caspase-3 determines the cancer cell fate during chemotherapy. Nat Commun. 2025;16(1):5006. https://doi.org/10.1038/s41467-025-60144-2.


    Google Scholar
     

  • Wen J, Wen K, Tao M, et al. Integrated analysis reveals an immune evasion prognostic signature for predicting the overall survival in patients with hepatocellular carcinoma. Cancer Cell Int. 2025;25(1):101. https://doi.org/10.1186/s12935-025-03743-9.


    Google Scholar
     

  • Weinstein JN, Collisson EA, Mills GB, et al. The Cancer Genome Atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20. https://doi.org/10.1038/ng.2764.


    Google Scholar
     

  • Jiang L, Qi Y, Yang L, et al. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment. Asian J Pharm Sci. 2023;18(5):100852. https://doi.org/10.1016/j.ajps.2023.100852.


    Google Scholar
     

  • Hu F, Huang J, Bing T, et al. Stimulus-responsive copper complex nanoparticles induce cuproptosis for augmented cancer immunotherapy. Adv Sci. 2024;11(13):2309388. https://doi.org/10.1002/advs.202309388.


    Google Scholar
     

  • Li K, Wu L, Wang H, et al. Apoptosis and cuproptosis co-activated copper-based metal-organic frameworks for cancer therapy. J Nanobiotechnology. 2024;22(1):546. https://doi.org/10.1186/s12951-024-02828-3.


    Google Scholar
     

  • Zhang N, Ping W, Rao K, et al. Biomimetic copper-doped polypyrrole nanoparticles induce glutamine metabolism inhibition to enhance breast cancer cuproptosis and immunotherapy. J Control Release. 2024;371:204–15. https://doi.org/10.1016/j.jconrel.2024.05.045.


    Google Scholar
     

  • He G, Pan Y, Zeng F, et al. Microfluidic synthesis of CuH nanoparticles for antitumor therapy through hydrogen-enhanced apoptosis and cuproptosis. ACS Nano. 2024;18(12):9031–42. https://doi.org/10.1021/acsnano.3c12796.


    Google Scholar
     

  • Mao L, Lu J, Wen X, et al. Cuproptosis: mechanisms and nanotherapeutic strategies in cancer and beyond. Chem Soc Rev. 2025;54(13):6282–334. https://doi.org/10.1039/d5cs00083a.


    Google Scholar
     

  • Bao J, Wang J, Chen S, et al. Coordination self-assembled AuTPyP-Cu metal-organic framework nanosheets with pH/ultrasound dual-responsiveness for synergistically triggering cuproptosis-augmented chemotherapy. ACS Nano. 2024;18(12):9100–13. https://doi.org/10.1021/acsnano.3c13225.


    Google Scholar
     

  • Choi J, Shin JY, Kim TK, et al. Site-specific mutagenesis screening in KRAS mutant library to uncover resistance mechanisms to KRASG12D inhibitors. Cancer Lett. 2024;591:216904. https://doi.org/10.1016/j.canlet.2024.216904.


    Google Scholar
     

  • Shi Y, Wu Z, Qi M, et al. Multiscale bioresponses of metal nanoclusters. Adv Mater. 2024;36(13):e2310529. https://doi.org/10.1002/adma.202310529.


    Google Scholar
     

  • Yan N, Wang Y, Wong TY, et al. Differential mapping of intracellular metallic nanoparticles and ions and dynamic modeling prediction. ACS Nano. 2025;19(23):21644–59. https://doi.org/10.1021/acsnano.5c04379.


    Google Scholar
     



  • Source link

    CAD cancer colorectal Cuproptosis induction Inhibition Journal microenvironmentresponsive Nanobiotechnology nanoheterojunction progression synergistic Targeting tumor
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    A biohybrid chiral hydrogel enhances preclinical postoperative glioblastoma therapy by multi-pronged inhibition of tumour stemness

    December 29, 2025

    Probing the fundamental nature of the Higgs Boson – Physics World

    December 28, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    MIT in the media: 2025 in review | MIT News

    December 29, 2025

    Marine Recovery Fund aims to boost nature and offshore wind development

    December 29, 2025

    How to Monitor AI Agents with MLflow?

    December 29, 2025

    Women in Construction: Pathways into 2026

    December 29, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    MIT in the media: 2025 in review | MIT News

    December 29, 2025

    Marine Recovery Fund aims to boost nature and offshore wind development

    December 29, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.