Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73(3):233–54. https://doi.org/10.3322/caac.21772.
Benson AB, Venook AP, Adam M, et al. NCCN guidelines® insights: rectal cancer, version 3.2024. J Natl Compr Canc Netw. 2024;22(6):366–75. https://doi.org/10.6004/jnccn.2024.0041.
Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386–422. https://doi.org/10.1093/annonc/mdw235.
Lenz HJ, Van Cutsem E, Luisa Limon M, et al. First-line Nivolumab plus low-dose Ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol. 2022;40(2):161–70. https://doi.org/10.1200/JCO.21.01015.
Tournigand C, André T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2023;41(19):3469–77. https://doi.org/10.1200/JCO.22.02774.
Hu S, Dai H, Li T, et al. Broad RTK-targeted therapy overcomes molecular heterogeneity-driven resistance to cetuximab via vectored immunoprophylaxis in colorectal cancer. Cancer Lett. 2016;382(1):32–43. https://doi.org/10.1016/j.canlet.2016.08.022.
Rm J, X Q, Cf L, et al. ARID1A mutations confer intrinsic and acquired resistance to cetuximab treatment in colorectal cancer. Nature communications. 2022;13(1). https://doi.org/10.1038/s41467-022-33172-5
Arafeh R, Shibue T, Dempster JM, Hahn WC, Vazquez F. The present and future of the cancer dependency map. Nat Rev Cancer. 2025;25(1):59–73. https://doi.org/10.1038/s41568-024-00763-x.
Copur MS, Tun SM, Duckert R. PD-1 blockade in mismatch repair-deficient rectal cancer. N Engl J Med. 2022;387(9):854–5. https://doi.org/10.1056/NEJMc2209706.
Fleischer JR, Schmitt AM, Haas G, et al. Molecular differences of angiogenic versus vessel co-opting colorectal cancer liver metastases at single-cell resolution. Mol Cancer. 2023;22(1):17. https://doi.org/10.1186/s12943-023-01713-1.
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8(1):293. https://doi.org/10.1038/s41392-023-01536-y.
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev. 2021;121(3):1746–803. https://doi.org/10.1021/acs.chemrev.0c00779.
Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. “Passive” nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev. 2023;52(21):7579–601. https://doi.org/10.1039/d2cs00998f.
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med. 2021;18(2):336–51. https://doi.org/10.20892/j.issn.2095-3941.2020.0510.
Andrade F, Rafael D, Vilar-Hernández M, et al. Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. J Control Release. 2021;331:198–212. https://doi.org/10.1016/j.jconrel.2021.01.022.
Téllez T, Martin-García D, Redondo M, García-Aranda M. Clusterin expression in colorectal carcinomas. Int J Mol Sci. 2023;24(19):14641. https://doi.org/10.3390/ijms241914641.
Liu Y, Lin Y, Xiao H, et al. mRNA-responsive two-in-one nanodrug for enhanced anti-tumor chemo-gene therapy. J Control Release. 2024;369:765–74. https://doi.org/10.1016/j.jconrel.2024.04.007.
Dutt Y, Pandey RP, Dutt M, et al. Therapeutic applications of nanobiotechnology. J Nanobiotechnol. 2023;21(1):148. https://doi.org/10.1186/s12951-023-01909-z.
Yong J, Mellick AS, Whitelock J, Wang J, Liang K. A biomolecular toolbox for precision nanomotors. Adv Mater. 2023;35(15):e2205746. https://doi.org/10.1002/adma.202205746.
Yang X, Wu H. RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms. J Hematol Oncol. 2024;17(1):108. https://doi.org/10.1186/s13045-024-01631-9.
Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020;19(8):533–52. https://doi.org/10.1038/s41573-020-0068-6.
Hitchen N, Williams S, Desai J. Recent advances in therapeutic targeting of the KRAS pathway in cancer. Pharmacol Ther. 2025;273:108889. https://doi.org/10.1016/j.pharmthera.2025.108889.
Ye W, Lu X, Qiao Y, Ou WB. Activity and resistance to KRASG12C inhibitors in non-small cell lung cancer and colorectal cancer. Biochim Biophys Acta Rev Cancer. 2024;1879(3):189108. https://doi.org/10.1016/j.bbcan.2024.189108.
Jänne PA, Riely GJ, Gadgeel SM, et al. Adagrasib in non–small-cell lung cancer harboring a KRASG12C mutation. N Engl J Med. 2022;387(2):120–31. https://doi.org/10.1056/NEJMoa2204619.
Maruyama K, Shimizu Y, Nomura Y, et al. Mechanisms of KRAS inhibitor resistance in KRAS-mutant colorectal cancer harboring Her2 amplification and aberrant KRAS localization. NPJ Precis Oncol. 2025;9(1):4. https://doi.org/10.1038/s41698-024-00793-6.
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF – a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol. 2024;21(3):224–47. https://doi.org/10.1038/s41571-023-00852-0.
Ruiz-Saenz A, Atreya CE, Wang C, et al. A reversible SRC-relayed COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in BRAFV600E colorectal tumors. Nat Cancer. 2023;4(2):240–56. https://doi.org/10.1038/s43018-022-00508-5.
Wan Q, Tavakoli L, Wang TY, et al. Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nat Commun. 2024;15(1):1442. https://doi.org/10.1038/s41467-024-45852-5.
Guo L, Yi X, Chen L, et al. Single-cell DNA sequencing reveals punctuated and gradual clonal evolution in hepatocellular carcinoma. Gastroenterology. 2022;162(1):238–52. https://doi.org/10.1053/j.gastro.2021.08.052.
Xie X, Zhang B, Peng J, et al. EGF-upregulated lncRNA ESSENCE promotes colorectal cancer growth through stabilizing CAD and ferroptosis defense. Research. 2025;8:0649. https://doi.org/10.34133/research.0649.
Li G, Xiao K, Li Y, Gao J, He S, Li T. CHIP promotes CAD ubiquitination and degradation to suppress the proliferation and colony formation of glioblastoma cells. Cell Oncol (Dordr). 2024;47(3):851–65. https://doi.org/10.1007/s13402-023-00899-2.
Pan J, Zhang M, Rao D, et al. CAD manipulates tumor intrinsic DHO/UBE4B/NF-κB pathway and fuels macrophage cross-talk, promoting HCC metastasis. Hepatology. Published online 2025 March 12 https://doi.org/10.1097/HEP.0000000000001304
Ma J, Zhao J, Zhang C, et al. Cleavage of CAD by caspase-3 determines the cancer cell fate during chemotherapy. Nat Commun. 2025;16(1):5006. https://doi.org/10.1038/s41467-025-60144-2.
Wen J, Wen K, Tao M, et al. Integrated analysis reveals an immune evasion prognostic signature for predicting the overall survival in patients with hepatocellular carcinoma. Cancer Cell Int. 2025;25(1):101. https://doi.org/10.1186/s12935-025-03743-9.
Weinstein JN, Collisson EA, Mills GB, et al. The Cancer Genome Atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20. https://doi.org/10.1038/ng.2764.
Jiang L, Qi Y, Yang L, et al. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment. Asian J Pharm Sci. 2023;18(5):100852. https://doi.org/10.1016/j.ajps.2023.100852.
Hu F, Huang J, Bing T, et al. Stimulus-responsive copper complex nanoparticles induce cuproptosis for augmented cancer immunotherapy. Adv Sci. 2024;11(13):2309388. https://doi.org/10.1002/advs.202309388.
Li K, Wu L, Wang H, et al. Apoptosis and cuproptosis co-activated copper-based metal-organic frameworks for cancer therapy. J Nanobiotechnology. 2024;22(1):546. https://doi.org/10.1186/s12951-024-02828-3.
Zhang N, Ping W, Rao K, et al. Biomimetic copper-doped polypyrrole nanoparticles induce glutamine metabolism inhibition to enhance breast cancer cuproptosis and immunotherapy. J Control Release. 2024;371:204–15. https://doi.org/10.1016/j.jconrel.2024.05.045.
He G, Pan Y, Zeng F, et al. Microfluidic synthesis of CuH nanoparticles for antitumor therapy through hydrogen-enhanced apoptosis and cuproptosis. ACS Nano. 2024;18(12):9031–42. https://doi.org/10.1021/acsnano.3c12796.
Mao L, Lu J, Wen X, et al. Cuproptosis: mechanisms and nanotherapeutic strategies in cancer and beyond. Chem Soc Rev. 2025;54(13):6282–334. https://doi.org/10.1039/d5cs00083a.
Bao J, Wang J, Chen S, et al. Coordination self-assembled AuTPyP-Cu metal-organic framework nanosheets with pH/ultrasound dual-responsiveness for synergistically triggering cuproptosis-augmented chemotherapy. ACS Nano. 2024;18(12):9100–13. https://doi.org/10.1021/acsnano.3c13225.
Choi J, Shin JY, Kim TK, et al. Site-specific mutagenesis screening in KRAS mutant library to uncover resistance mechanisms to KRASG12D inhibitors. Cancer Lett. 2024;591:216904. https://doi.org/10.1016/j.canlet.2024.216904.
Shi Y, Wu Z, Qi M, et al. Multiscale bioresponses of metal nanoclusters. Adv Mater. 2024;36(13):e2310529. https://doi.org/10.1002/adma.202310529.
Yan N, Wang Y, Wong TY, et al. Differential mapping of intracellular metallic nanoparticles and ions and dynamic modeling prediction. ACS Nano. 2025;19(23):21644–59. https://doi.org/10.1021/acsnano.5c04379.
