Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Databricks Spatial Joins Now 17x Faster Out-of-the-Box

    December 27, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Cisco Meraki + PagerDuty Integration for Faster Incident Response

    December 27, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»The potential of plant-derived vesicles in treating periodontitis and associated systemic diseases: current advances and future directions | Journal of Nanobiotechnology
    Nanotechnology

    The potential of plant-derived vesicles in treating periodontitis and associated systemic diseases: current advances and future directions | Journal of Nanobiotechnology

    big tee tech hubBy big tee tech hubAugust 20, 20250148 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    The potential of plant-derived vesicles in treating periodontitis and associated systemic diseases: current advances and future directions | Journal of Nanobiotechnology
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Kwon T, Lamster IB, Levin L. Current concepts in the management of periodontitis. Int Dent J. 2021;71:462–76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000. 2017;75:7–23.

    PubMed 

    Google Scholar
     

  • Trindade D, Carvalho R, Machado V, Chambrone L, Mendes JJ, Botelho J. Prevalence of periodontitis in dentate people between 2011 and 2020: a systematic review and meta-analysis of epidemiological studies. J Clin Periodontol. 2023;50:604–26.

    PubMed 

    Google Scholar
     

  • Mainas G, Ide M, Rizzo M, Magan-Fernandez A, Mesa F, Nibali L. Managing the systemic impact of periodontitis. Med (Mex). 2022;58:621.


    Google Scholar
     

  • Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000. 2017;75:152–88.

    PubMed 

    Google Scholar
     

  • HAAS AN, FURLANETO F, GAIO EJ, GOMES SC, PALIOTO DB, CASTILHO RM, et al. New tendencies in non-surgical periodontal therapy. Braz Oral Res. 2021;35:e095.

    PubMed 

    Google Scholar
     

  • Cobb CM. Lasers and the treatment of periodontitis: the essence and the noise. Periodontol. 2000. 2017;75:205–95.

  • Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halperin W, Jensen WA. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res. 1967;18:428–43.

    PubMed 

    Google Scholar
     

  • Zhao B, Lin H, Jiang X, Li W, Gao Y, Li M, et al. Exosome-like nanoparticles derived from fruits, vegetables, and herbs: innovative strategies of therapeutic and drug delivery. Theranostics. 2024;14:4598–621.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Zhu Y, Chen S, Wang D, Zhang S, Xia J, et al. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood–brain-barrier penetration and tumor microenvironment modulation. J Nanobiotechnol. 2023;21:253.


    Google Scholar
     

  • Subudhi PD, Bihari C, Sarin SK, Baweja S. Emerging role of edible Exosomes-Like nanoparticles (ELNs) as hepatoprotective agents. Nanotheranostics. 2022;6:365–75.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dad HA, Gu T-W, Zhu A-Q, Huang L-Q, Peng L-H. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29:13–31.

    PubMed 

    Google Scholar
     

  • Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience. 2019;21:308–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Tian R, Liang C, Jia Y, Zhao L, Xie Q, et al. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management. Biomaterials. 2025;313:122804.

    PubMed 

    Google Scholar
     

  • Sundaram K, Mu J, Kumar A, Behera J, Lei C, Sriwastva MK, et al. Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics. 2022;12:1220–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao M, Diao N, Cai X, Chen X, Xiao Y, Guo C, et al. Plant exosome nanovesicles (PENs): green delivery platforms. Mater Horiz. 2023;10:3879–94.

    PubMed 

    Google Scholar
     

  • Li D, Tang Q, Yang M, Xu H, Zhu M, Zhang Y, et al. Plant-derived exosomal nanoparticles: potential therapeutic for inflammatory bowel disease. Nanoscale Adv. 2023;5:3575–88.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan X, Xu Y, Zhou S, Pan M, Cao Y, Cai X, et al. Advances in the study of Plant-Derived Vesicle-Like nanoparticles in inflammatory diseases. J Inflamm Res. 2023;16:4363–72.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Ji S, Yan Y, Lin S, He L, Huang X, et al. Engineered Plant-Derived nanovesicles facilitate tumor therapy: natural bioactivity plus drug controlled release platform. Int J Nanomed. 2023;18:4779–804.


    Google Scholar
     

  • Zhang Q, Jeppesen DK, Higginbotham JN, Franklin JL, Coffey RJ. Comprehensive isolation of extracellular vesicles and nanoparticles. Nat Protoc. 2023;18:1462–87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bokka R, Ramos AP, Fiume I, Manno M, Raccosta S, Turiák L, et al. Biomanufacturing of tomato-derived nanovesicles. Foods. 2020;9: 1852.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinedo M, de la Canal L, de Marcos Lousa C. A call for rigor and standardization in plant extracellular vesicle research. J Extracell Vesicles. 2021;10:e12048.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf Apoplast carry Stress-Response proteins. Plant Physiol. 2017;173:728–41.

    PubMed 

    Google Scholar
     

  • Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J ImmunoTher Cancer. 2019;7:326.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang W-R, Wang Y, Lei Y, Zuo L, Jiang A, Wu G, et al. Phytochemical engineered bacterial outer membrane vesicles for photodynamic effects promoted immunotherapy. Nano Lett. 2022;22:4491–500.

    PubMed 

    Google Scholar
     

  • Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. Biogenesis of plant prevacuolar multivesicular bodies. Mol Plant. 2016;9:774–86.

    PubMed 

    Google Scholar
     

  • Farley JT, Eldahshoury MK, de Marcos Lousa C. Unconventional secretion of plant extracellular vesicles and their benefits to human health: A mini review. Front Cell Dev Biol. 2022;10:883841.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfieri M, Leone A, Ambrosone A. Plant-derived nano and microvesicles for human health and therapeutic potential in nanomedicine. Pharmaceutics. 2021;13(4): 13:498.

    PubMed 

    Google Scholar
     

  • Yugay Y, Tsydeneshieva Z, Rusapetova T, Grischenko O, Mironova A, Bulgakov D, et al. Isolation and characterization of extracellular vesicles from Arabidopsis Thaliana cell culture and investigation of the specificities of their biogenesis. Plants. 2023;12:3604.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, et al. EXPO, an Exocyst-Positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell. 2010;22:4009–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Y, DING Y, Wang J, Kung C-H, Zhuang X, Yin Z et al. EXPO and autophagosomes are distinct organelles in plants. Plant Physiol. 2015;169:pp.00953.2015.

  • Wang Y, Wu Y, Shen S, Liu Y, Xia Y, Xia H, et al. Engineered plant extracellular vesicles for natural delivery across physiological barriers. Food Funct. 2024;15:1737–57.

    PubMed 

    Google Scholar
     

  • Cui Y, Cao W, He Y, Zhao Q, Wakazaki M, Zhuang X, et al. A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nat Plants. 2018;5:95–105.

    PubMed 

    Google Scholar
     

  • Ito Y, Taniguchi K, Kuranaga Y, Eid N, Inomata Y, Lee S-W, et al. Uptake of MicroRNAs from Exosome-Like nanovesicles of edible plant juice by rat enterocytes. Int J Mol Sci. 2021;22:3749.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, et al. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 2009;23:2496–506.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manjithaya R, Anjard C, Loomis WF, Subramani S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol. 2010;188:537–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson CT, Kieber JJ. Dynamic construction, perception, and remodeling of plant cell walls. Annu Rev Plant Biol. 2020;71:39–69.

    PubMed 

    Google Scholar
     

  • Adani F, Papa G, Schievano A, Cardinale G, D’Imporzano G, Tambone F. Nanoscale structure of the cell wall protecting cellulose from enzyme attack. Environ Sci Technol. 2011;45:1107–13.

    PubMed 

    Google Scholar
     

  • de la Canal L, Pinedo M. Extracellular vesicles: a missing component in plant cell wall remodeling. J Exp Bot. 2018;69:4655–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruf A, Oberkofler L, Robatzek S, Weiberg A. Spotlight on plant RNA-containing extracellular vesicles. Curr Opin Plant Biol. 2022;69:102272.

    PubMed 

    Google Scholar
     

  • Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13:620–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger E, Colosetti P, Jalabert A, Meugnier E, Wiklander OPB, Jouhet J, et al. Use of nanovesicles from orange juice to reverse Diet-Induced gut modifications in Diet-Induced obese mice. Mol Ther Methods Clin Dev. 2020;18:880–92.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye L, Gao Y, Mok SWF, Liao W, Wang Y, Chen C, et al. Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia. J Nanobiotechnol. 2024;22:190.


    Google Scholar
     

  • Wang J, Zhang T, Gu R, Ke Y, Zhang S, Su X, et al. Development and evaluation of reconstructed nanovesicles from turmeric for multifaceted obesity intervention. ACS Nano. 2024;18:23117–35.

    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang X, Kai T, Zhang L, Li A. Lycium ruthenicum Murray derived exosome-like nanovesicles inhibit Aβ-induced apoptosis in PC12 cells via MAPK and PI3K/AKT signaling pathways. Int J Biol Macromol. 2024;277:134309.

    PubMed 

    Google Scholar
     

  • Sabatke B, Rossi IV, Sana A, Bonato LB, Ramirez MI. Extracellular vesicles biogenesis and uptake concepts: A comprehensive guide to studying host–pathogen communication. Mol Microbiol. 2024;122:613–29.https://onlinelibrary.wiley.com/doi/10.1111/mmi.15168

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itakura S, Shohji A, Amagai S, Kitamura M, Takayama K, Sugibayashi K, et al. Gene knockdown in HaCaT cells by small interfering RNAs entrapped in grapefruit-derived extracellular vesicles using a microfluidic device. Sci Rep. 2023;13:3102.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, et al. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. Phytomedicine. 2024;135: 156087.

    PubMed 

    Google Scholar
     

  • Chaya T, Banerjee A, Rutter BD, Adekanye D, Ross J, Hu G, et al. The extracellular vesicle proteomes of Sorghum bicolor and Arabidopsis Thaliana are partially conserved. Plant Physiol. 2024;194:1481–97.

    PubMed 

    Google Scholar
     

  • Jokhio S, Peng I, Peng C-A. Extracellular vesicles isolated from Arabidopsis Thaliana leaves reveal characteristics of mammalian exosomes. Protoplasma. 2024;261:1025–33.

    PubMed 

    Google Scholar
     

  • Vestuto V, Conte M, Vietri M, Mensitieri F, Santoro V, Di Muro A, et al. Multiomic profiling and neuroprotective bioactivity of salvia hairy root-derived extracellular vesicles in a cellular model of parkinson’s disease. Int J Nanomedicine. 2024;19:9373–93.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu N-J, Wang N, Bao J-J, Zhu H-X, Wang L-J, Chen X-Y. Lipidomic analysis reveals the importance of GIPCs in Arabidopsis leaf extracellular vesicles. Mol Plant. 2020;13:1523–32.

    PubMed 

    Google Scholar
     

  • Wang S, He B, Wu H, Cai Q, Ramírez-Sánchez O, Abreu-Goodger C, et al. Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection. Cell Host Microbe. 2024;32:93–e1056.

    PubMed 

    Google Scholar
     

  • Zhou S, Huang P, Cao Y, Hua X, Yang Y, Liu S. Garlic-Derived Exosome-like Nanovesicles-Based wound dressing for Staphylococcus aureus infection visualization and treatment. ACS Appl Bio Mater. 2024;7:1888–98.

    PubMed 

    Google Scholar
     

  • Shkryl Y, Tsydeneshieva Z, Menchinskaya E, Rusapetova T, Grishchenko O, Mironova A, et al. Exosome-like nanoparticles, high in Trans-δ-Viniferin derivatives, produced from grape cell cultures: preparation, characterization, and anticancer properties. Biomedicines. 2024;12:2142.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang M, Luo Q, Chen X, Chen F. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma. J Nanobiotechnol. 2021;19:259. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-021-00995-1

  • Karamanidou T, Krommydas K, Karanikou M, Tsamos D, Michalakis K, Kletsas D, et al. Biological activities of Citrus-derived extracellular vesicles on human cells: the role of preservation. Curr Issues Mol Biol. 2024;46:5812–24.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chincinska IA. Leaf infiltration in plant science: old method, new possibilities. Plant Methods. 2021;17:83.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freire FBS, Morais EG, Daloso DM. Toward the Apoplast metabolome: Establishing a leaf Apoplast collection approach suitable for metabolomics analysis. Plant Physiol Biochem. 2024;215:109080.

    PubMed 

    Google Scholar
     

  • Dora S, Terrett OM, Sánchez-Rodríguez C. Plant–microbe interactions in the apoplast: communication at the plant cell wall. Plant Cell. 2022;34:1532–50.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regente M, Corti-Monzón G, Maldonado AM, Pinedo M, Jorrín J, de la Canal L. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett. 2009;583:3363–6.

    PubMed 

    Google Scholar
     

  • Rutter B, Rutter K, Innes R. Isolation and quantification of plant extracellular vesicles. Bio-Protocol. 2017;7: e2533.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adekanye D, Chaya T, Caplan J. Sorghum bicolor extracellular vesicle isolation, labeling, and correlative light and electron microscopy. BIO-PROTOCOL. 2024;14: e5083.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsbury NJ, McDonald KA. Quantitative evaluation of E1 endoglucanase recovery from tobacco leaves using the vacuum infiltration-centrifugation method. Biomed Res Int. 2014;2014:1–10.


    Google Scholar
     

  • Kilasoniya A, Garaeva L, Shtam T, Spitsyna A, Putevich E, Moreno-Chamba B, et al. Potential of plant exosome vesicles from grapefruit (Citrus × paradisi) and tomato (Solanum lycopersicum) juices as functional ingredients and targeted drug delivery vehicles. Antioxidants. 2023;12:943.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye C, Yan C, Bian S-J, Li X-R, Li Y, Wang K-X, et al. Momordica charantia L.-derived exosome-like nanovesicles stabilize p62 expression to ameliorate doxorubicin cardiotoxicity. J Nanobiotechnol. 2024;22:464.https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02705-z

  • Wang J, Ran B, Ma W, Teng Y, Bello MG, Chen L, et al. Development of ginger-derived extracellular vesicles thermosensitive gel for UVA-induced photodamage of skin. J Drug Delivery Sci Technol. 2024;96:105649.


    Google Scholar
     

  • Zeng Y-B, Deng X, Shen L-S, Yang Y, Zhou X, Ye L, et al. Advances in plant-derived extracellular vesicles: isolation, composition, and biological functions. Food Funct. 2024;15:11319–41. https://pubs.rsc.org/en/content/articlelanding/2024/fo/d4fo04321a

  • Liu Y, Wu S, Koo Y, Yang A, Dai Y, Khant H, et al. Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles. Nanomed Nanotechnol Biol Med. 2020;29:102271.


    Google Scholar
     

  • Ferber E, Gerhards J, Sauer M, Krischke M, Dittrich MT, Müller T, et al. Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb. Front Plant Sci. 2020;11:887.https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.00887/full

  • Garaeva L, Kamyshinsky R, Kil Y, Varfolomeeva E, Verlov N, Komarova E, et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021;11:6489.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, et al. Study on supramolecules in traditional Chinese medicine decoction. Molecules. 2022;27:3268.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Wang H, Bi W, Su Y, Xiong Y, Wang S, et al. Nano-characterization, composition analysis, and anti-inflammatory activity of American-ginseng-derived vesicle-like nanoparticles. Molecules. 2024;29:3443.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Liang Z, Du J, Wang Z, Mei S, Li Z, et al. Herbal decoctosome is a novel form of medicine. Sci China Life Sci. 2019;62:333–48.

    PubMed 

    Google Scholar
     

  • Sánchez‐López CM, Soler C, Garzo E, Fereres A, Pérez‐Bermúdez P, Marcilla A. Phloem sap from melon plants contains extracellular vesicles that carry active proteasomes which increase in response to aphid infestation. J Extracell Vesicles. 2024;13: e12517.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altıntaş Ö, Saylan Y. Exploring the versatility of exosomes: A review on isolation, characterization, detection methods, and diverse applications. Anal Chem. 2023;95:16029–48.

    PubMed 

    Google Scholar
     

  • Rivero-Pino F, Marquez-Paradas E, Montserrat-de la Paz S. Food-derived vesicles as Immunomodulatory drivers: current knowledge, gaps, and perspectives. Food Chem. 2024;457:140168.

    PubMed 

    Google Scholar
     

  • Clos-Sansalvador M, Monguió-Tortajada M, Roura S, Franquesa M, Borràs FE. Commonly used methods for extracellular vesicles’ enrichment: implications in downstream analyses and use. Eur J Cell Biol. 2022;101:151227.

    PubMed 

    Google Scholar
     

  • Wang W, Sun H, Duan H, Sheng G, Tian N, Liu D, et al. Isolation and usage of exosomes in central nervous system diseases. CNS Neurosci Ther. 2024;30: e14677.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Wang S, Cai Q, Jin H. Effective methods for isolation and purification of extracellular vesicles from plants. J Integr Plant Biol. 2021;63:2020–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui W-W, Ye C, Wang K-X, Yang X, Zhu P-Y, Hu K, et al. Momordica. charantia-derived extracellular vesicles-like nanovesicles protect cardiomyocytes against radiation injury via attenuating DNA damage and mitochondria dysfunction. Front Cardiovasc Med. 2022;9:864188.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutter BD, Innes RW. Growing pains: addressing the pitfalls of plant extracellular vesicle research. New Phytol. 2020;228:1505–10.

    PubMed 

    Google Scholar
     

  • Jia Y, Yu L, Ma T, Xu W, Qian H, Sun Y, et al. Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics. 2022;12:6548–75.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grenhas M, Lopes R, Ferreira BV, Barahona F, João C, Carneiro EA. Size-Exclusion chromatography: A path to higher yield and reproducibility compared to sucrose cushion ultracentrifugation for extracellular vesicle isolation in multiple myeloma. Int J Mol Sci. 2024;25:8496.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sidhom K, Obi PO, Saleem A. A review of Exosomal isolation methods: is size exclusion chromatography the best option?? Int J Mol Sci. 2020;21:6466.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo J, Wu C, Lin X, Zhou J, Zhang J, Zheng W, et al. Establishment of a simplified dichotomic size-exclusion chromatography for isolating extracellular vesicles toward clinical applications. J Extracell Vesicles. 2021;10:e12145.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel U, Susman D, Allan AL. Quality control and validation of extracellular vesicles isolated from cultured human breast cancer cells. BMC Res Notes. 2024;17:202.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu J, Huang D, Liu H, Cai H. Optimizing conditions of polyethylene glycol precipitation for exosomes isolation from MSCs culture media for regenerative treatment. Biotechnol J. 2024;19:e202400374.

    PubMed 

    Google Scholar
     

  • Kalarikkal SP, Prasad D, Kasiappan R, Chaudhari SR, Sundaram GM. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci Rep. 2020;10:4456.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Zhou C, Tan M, Cao Y, Ren Y, Peng L. Optimization and characterization of PEG extraction process for Tartary Buckwheat-Derived nanoparticles. Foods. 2024;13:2624.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ing TS. Isolated ultrafiltration: its origin and early development. Artif Organs. 2013;37:841–7.

    PubMed 

    Google Scholar
     

  • You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater. 2021;6:4321–32.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kırbaş OK, Sağraç D, Çiftçi ÖC, Özdemir G, Öztürkoğlu D, Bozkurt BT, et al. Unveiling the potential: extracellular vesicles from plant cell suspension cultures as a promising source. BioFactors. 2025;51:e2090.

    PubMed 

    Google Scholar
     

  • Liangsupree T, Multia E, Riekkola M-L. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A. 2021;1636: 461773.

    PubMed 

    Google Scholar
     

  • Al-Madhagi H. The landscape of exosomes biogenesis to clinical applications. Int J Nanomed. 2024;19:3657–75.


    Google Scholar
     

  • Liu N, Hou L, Chen X, Bao J, Chen F, Cai W, et al. Arabidopsis TETRASPANIN8 mediates exosome secretion and Glycosyl inositol phosphoceramide sorting and trafficking. Plant Cell. 2024;36:626–41.

    PubMed 

    Google Scholar
     

  • He B, Cai Q, Qiao L, Huang C-Y, Wang S, Miao W, et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat Plants. 2021;7:342–52.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen Z, Yu J, Jeong H, Kim D-U, Yang JY, Hyun K-A, et al. An all-in-one platform to deplete pathogenic bacteria for rapid and safe enrichment of plant-derived extracellular vesicles. Lab Chip. 2023;23:4483–92.

    PubMed 

    Google Scholar
     

  • Steć A, Chodkowska M, Kasprzyk-Pochopień J, Mielczarek P, Piekoszewski W, Lewczuk B, et al. Isolation of citrus lemon extracellular vesicles: development and process control using capillary electrophoresis. Food Chem. 2023;424:136333.

    PubMed 

    Google Scholar
     

  • Schröder S, Zhang H, Yeung ES, Jänsch L, Zabel C, Wätzig H. Quantitative gel electrophoresis: sources of variation. J Proteome Res. 2008;7:1226–34.

    PubMed 

    Google Scholar
     

  • Woith E, Melzig MF. Extracellular vesicles from fresh and dried Plants—Simultaneous purification and visualization using gel electrophoresis. Int J Mol Sci. 2019;20:357.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang M, Liu X, Luo Q, Xu L, Chen F. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnol. 2020;18: 100.


    Google Scholar
     

  • Rhim W-K, Kim JY, Lee SY, Cha S-G, Park JM, Park HJ, et al. Recent advances in extracellular vesicle engineering and its applications to regenerative medicine. Biomater Res. 2023;27:130.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The antioxidant effect of small extracellular vesicles derived from Aloe vera peels for wound healing. Tissue Eng Regen Med. 2021;18:561–71.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim WS, Ha J-H, Jeong S-H, Lee J-I, Lee B-W, Jeong YJ, et al. Immunological effects of aster Yomena Callus-Derived extracellular vesicles as potential therapeutic agents against allergic asthma. Cells. 2022;11:2805.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma S, Mahanty M, Rahaman SG, Mukherjee P, Dutta B, Khan MI, et al. Avocado-derived extracellular vesicles loaded with Ginkgetin and Berberine prevent inflammation and macrophage foam cell formation. J Cell Mol Med. 2024;28: e18177.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aziz MA, Seo B, Hussaini HM, Hibma M, Rich AM. Comparing two methods for the isolation of exosomes. J Nucleic Acids. 2022;2022:8648373.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taşlı PN. Usage of celery root exosome as an immune suppressant; lipidomic characterization of apium graveolens originated exosomes and its suppressive effect on pma/ionomycin mediated CD4 + T lymphocyte activation. J Food Biochem. 2022;46:e14393.

    PubMed 

    Google Scholar
     

  • Jackson KK, Mata C, Marcus RK. A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources. Talanta. 2023;252:123779.

    PubMed 

    Google Scholar
     

  • Ramírez O, Pomareda F, Olivares B, Huang Y-L, Zavala G, Carrasco-Rojas J, et al. Aloe vera peel-derived nanovesicles display anti-inflammatory properties and prevent myofibroblast differentiation. Phytomedicine. 2024;122:155108.

    PubMed 

    Google Scholar
     

  • De Palma M, Ambrosone A, Leone A, Del Gaudio P, Ruocco M, Turiák L, et al. Plant roots release small extracellular vesicles with antifungal activity. Plants. 2020;9:1777.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buratta S, Latella R, Chiaradia E, Salzano AM, Tancini B, Pellegrino RM, et al. Characterization of nanovesicles isolated from olive vegetation water. Foods. 2024;13:835.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suresh AP, Kalarikkal SP, Pullareddy B, Sundaram GM. Low pH-Based method to increase the yield of Plant-Derived nanoparticles from fresh ginger rhizomes. ACS Omega. 2021;6:17635–41.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • López de las Hazas M-C, Tomé-Carneiro J, del Pozo-Acebo L, del Saz-Lara A, Chapado LA, Balaguer L, et al. Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous MiRNAs. Pharmacol Res. 2023;198:106999.

    PubMed 

    Google Scholar
     

  • Ekanayake G, Piibor J, Midekessa G, Godakumara K, Dissanayake K, Andronowska A, et al. Systematic characterization of extracellular vesicles from potato (Solanum tuberosum cv. Laura) roots and peels: biophysical properties and proteomic profiling. Front Plant Sci. 2024;15:1477614.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng W, Teng Y, Zhong Q, Zhang Y, Zhang J, Zhao P, et al. Biomimetic Grapefruit-Derived extracellular vesicles for safe and targeted delivery of sodium thiosulfate against vascular calcification. ACS Nano. 2023;17:24773–89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valentino A, Conte R, Bousta D, Bekkari H, Di Salle A, Calarco A, et al. Extracellular vesicles derived from opuntia ficus-indica fruit (OFI-EVs) speed up the normal wound healing processes by modulating cellular responses. Int J Mol Sci. 2024;25:7103.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Lin F, Wang W, Dai G, Ke X, Wu G. Investigating the therapeutic effects and mechanisms of Carthamus tinctorius L.-derived nanovesicles in atherosclerosis treatment. Cell Commun Signal. 2024. https://doi.org/10.1186/s12964-024-01561-6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris EJ, Kaur H, Dobhal G, Malhotra S, Ayed Z, Carpenter AL, et al. The physical characterization of extracellular vesicles for function Elucidation and biomedical applications: A review. Part Part Syst Char. 2024;41:2400024.


    Google Scholar
     

  • Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, et al. Novel plant-derived exosome-like nanovesicles from catharanthus roseus: preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU.1 axis. J Nanobiotechnology. 2023;21(1): 160.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, et al. Extracellular vesicles of Norway Spruce contain precursors and enzymes for lignin formation and Salicylic acid. Plant Physiol. 2024;196:788–809.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Li X, Yu H, Shi X, Zhou Y, Alvarez S, et al. Therapeutic potential of Garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Theranostics. 2021;11:9311–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-López CM, Manzaneque-López MC, Pérez-Bermúdez P, Soler C, Marcilla A. Characterization and bioactivity of extracellular vesicles isolated from pomegranate. Food Funct. 2022;13:12870–82.

    PubMed 

    Google Scholar
     

  • Rabienezhad Ganji N, Urzì O, Tinnirello V, Costanzo E, Polito G, Palumbo Piccionello A, et al. Proof-of-concept study on the use of Tangerine-derived nanovesicles as SiRNA delivery vehicles toward colorectal cancer cell line SW480. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms25010546.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei J, Palanisamy CP, Jayaraman S, Natarajan PM, Umapathy VR, Roy JR, et al. Proteomics profiling of extracellular vesicle for identification of potential biomarkers in Alzheimer’s disease: a comprehensive review. Ageing Res Rev. 2024;99: 102359.

    PubMed 

    Google Scholar
     

  • Zimmerman JA, Verboonen B, Harrison Hanson AP, Arballo LR, Brusslan JA. Arabidopsis Apoplast TET8 positively correlates to leaf senescence, and tet3tet8 double mutants are delayed in leaf senescence. Plant Direct. 2024;8:e70006.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai Q, Qiao L, Wang M, He B, Lin F-M, Palmquist J, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360:1126–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenach C, Chen Z, Grefen C, Blatt MR. The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant J. 2012;69:241–51.

    PubMed 

    Google Scholar
     

  • Neves J, Monteiro J, Sousa B, Soares C, Pereira S, Fidalgo F, et al. Relevance of the exocyst in Arabidopsis exo70e2 mutant for cellular homeostasis under stress. Int J Mol Sci. 2022;24:424.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larson ER, Ortmannová J, Donald NA, Alvim J, Blatt MR, Žárský V. Synergy among exocyst and SNARE interactions identifies a functional hierarchy in secretion during vegetative growth. Plant Cell. 2020;32:2951–63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortmannová J, Sekereš J, Kulich I, Šantrůček J, Dobrev P, Žárský V, et al. Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. J Exp Bot. 2022;73:742–55.

    PubMed 

    Google Scholar
     

  • Feng J, Xiu Q, Huang Y, Troyer Z, Li B, Zheng L. Plant-Derived Vesicle‐Like nanoparticles as promising biotherapeutic tools: present and future. Adv Mater. 2023;35:2207826.


    Google Scholar
     

  • Wei Y, Cai X, Wu Q, Liao H, Liang S, Fu H, et al. Extraction, isolation, and component analysis of Turmeric-Derived Exosome-like nanoparticles. Bioengineering. 2023;10:1199.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buratta S, Urbanelli L, Tognoloni A, Latella R, Cerrotti G, Emiliani C, et al. Protein and lipid content of milk extracellular vesicles: a comparative overview. Life (Basel). 2023;13:401.

    PubMed 

    Google Scholar
     

  • Wang B, Zhuang X, Deng Z-B, Jiang H, Mu J, Wang Q, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–34.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Ho I-L, Soeung M, Yen E-Y, Liu J, Yan L, et al. Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis. Nat Commun. 2023;14:2194.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee H, Zhuang L, Gan B. Ether phospholipids govern ferroptosis. J Genet Genomics. 2021;48:517–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Zhou Y, Yu J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol Pharm. 2019;16:2690–9.

    PubMed 

    Google Scholar
     

  • Kumar A, Sundaram K, Teng Y, Mu J, Sriwastva MK, Zhang L, et al. Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance. Theranostics. 2022;12:1388–403.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldrich P, Rutter BD, Karimi HZ, Podicheti R, Meyers BC, Innes RW. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-Nucleotide tiny RNAs. Plant Cell. 2019;31:315–24.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X-H, Yuan T-J, Dad HA, Shi M-Y, Huang Y-Y, Jiang Z-H, et al. Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 2021;21:8151–9.

    PubMed 

    Google Scholar
     

  • Shen H, Zhang M, Liu D, Liang X, Chang Y, Hu X, et al. Solanum lycopersicum derived exosome-like nanovesicles alleviate restenosis after vascular injury through the Keap1/Nrf2 pathway. Food Funct. 2025;16:539–53. https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo03993a

  • Wang X, Wu B, Sun G, He W, Gao J, Huang T, et al. Selenium biofortification enhanced miR167a expression in broccoli extracellular vesicles inducing apoptosis in human pancreatic cancer cells by targeting IRS1. Int J Nanomed. 2023;18:2431–46.


    Google Scholar
     

  • Wu B, Pan W, Luo S, Luo X, Zhao Y, Xiu Q, et al. Turmeric‐Derived Nanoparticles Functionalized Aerogel Regulates Multicellular Networks to Promote Diabetic Wound Healing. Adv Sci (Weinh). 2024;11:e2307630.https://pmc.ncbi.nlm.nih.gov/articles/PMC11095230/

  • Emmanuela N, Muhammad DR, Iriawati, Wijaya CH, Ratnadewi YMD, Takemori H, et al. Isolation of plant-derived exosome-like nanoparticles (PDENs) from solanum nigrum L. berries and their effect on interleukin-6 expression as a potential anti-inflammatory agent. PLoS ONE. 2024;19:e0296259.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Gao C, Guo P, Sheng J, Wang J. A novel approach to alleviate acetaminophen-induced hepatotoxicity with hybrid balloon flower root-derived exosome-like nanoparticles (BDEs) with Silymarin via Inhibition of hepatocyte MAPK pathway and apoptosis. Cell Commun Signal. 2024;22:334.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kocholatá M, Malý J, Kříženecká S, Janoušková O. Diversity of extracellular vesicles derived from calli, cell culture and apoplastic fluid of tobacco. Sci Rep. 2024;14:30111.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng X, Cheng L, You Y, Tang C, Ren B, Li Y, et al. Oral microbiota in human systematic diseases. Int J Oral Sci. 2022;14:14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000. 2015;69:7–17.

    PubMed 

    Google Scholar
     

  • Lee B-H, Wu S-C, Chien H-Y, Shen T-L, Hsu W-H. Tomato-fruit-derived extracellular vesicles inhibit Fusobacterium nucleatum via lipid-mediated mechanism. Food Funct. 2023;14:8942–50.

    PubMed 

    Google Scholar
     

  • Tan S, Liu Z, Cong M, Zhong X, Mao Y, Fan M, et al. Dandelion-derived vesicles-laden hydrogel dressings capable of neutralizing Staphylococcus aureus exotoxins for the care of invasive wounds. J Controlled Release. 2024;368:355–71.


    Google Scholar
     

  • Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-Derived Exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe. 2018;24:637–e6528.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Tan M-L, Zhu W-J, Cao Y-N, Peng L-X, Yan Z-Y, et al. In vitro effects of Tartary Buckwheat-Derived nanovesicles on gut microbiota. J Agric Food Chem. 2022;70:2616–29.

    PubMed 

    Google Scholar
     

  • Zhu M, Xu H, Liang Y, Xu J, Yue N, Zhang Y, et al. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis via facilitating double-positive CD4 + CD8 + T cells expansion. J Nanobiotechnology. 2023;21: 309.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sriwastva MK, Deng Z, Wang B, Teng Y, Kumar A, Sundaram K, et al. Exosome-like nanoparticles from mulberry bark prevent DSS‐induced colitis via the AhR/COPS8 pathway. EMBO Rep. 2022;23:e53365.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Z, Liao L, Gao M, Liu Q. Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-κB pathway and gut microbiota modulation. Food Funct. 2023;14:7520–34.

    PubMed 

    Google Scholar
     

  • Kim J, Zhang S, Zhu Y, Wang R, Wang J. Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines. J Ginseng Res. 2023;47:627–37.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Yin F, Fu L, Ma Y, Ye L, Huang Y, et al. Garlic-derived exosome-like nanovesicles as a hepatoprotective agent alleviating acute liver failure by inhibiting CCR2/CCR5 signaling and inflammation. Biomater Adv. 2023;154:213592.

    PubMed 

    Google Scholar
     

  • Vanessa V, Rachmawati H, Barlian A. Anti-inflammatory potential of goldenberry-derived exosome-like nanoparticles in macrophage polarization. Future Sci OA. 2024;10:FSO943.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan L, Cao Y, Hou L, Luo T, Li M, Gao S, et al. Ginger exosome-like nanoparticle-derived MiRNA therapeutics: A strategic inhibitor of intestinal inflammation. J Adv Res. 2024;S2090–1232(24):00130–9.


    Google Scholar
     

  • Qiu F-S, Wang J-F, Guo M-Y, Li X-J, Shi C-Y, Wu F, et al. Rgl-exomiR-7972, a novel plant Exosomal MicroRNA derived from fresh rehmanniae radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother. 2023;165:115007.

    PubMed 

    Google Scholar
     

  • Wu J, Ma X, Lu Y, Zhang T, Du Z, Xu J, et al. Edible pueraria lobata-Derived exosomes promote M2 macrophage polarization. Molecules. 2022;27:8184.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao C, Zhou Y, Chen Z, Li H, Xiao Y, Hao W, et al. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics. 2022;12:5596–614.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han R, Zhou D, Ji N, Yin Z, Wang J, Zhang Q, et al. Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway. J Nanobiotechnol. 2025;23:41.


    Google Scholar
     

  • Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-Derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-Activated protein kinase. Mol Ther. 2017;25:1641–54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Yu Y, Zhang Y, Dai H, Yang Q, Wang B, et al. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells. Nat Nanotechnol. 2024;19:1569–78.

    PubMed 

    Google Scholar
     

  • Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin L, Yan L, Yu Q, Wang J, Liu C, Wang L, et al. Characterization of the MicroRNA profile of ginger Exosome-like nanoparticles and their Anti-Inflammatory effects in intestinal Caco-2 cells. J Agric Food Chem. 2022;70:4725–34.

    PubMed 

    Google Scholar
     

  • Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived Exosomal MicroRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29:2424–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Li W, Bian Y, Jiang X, Zhu F, Yin F, et al. Garlic-derived exosomes regulate PFKFB3 expression to relieve liver dysfunction in high-fat diet-fed mice via macrophage-hepatocyte crosstalk. Phytomedicine. 2023;112:154679.

    PubMed 

    Google Scholar
     

  • Trentini M, Zanotti F, Tiengo E, Camponogara F, Degasperi M, Licastro D, et al. An Apple a day keeps the Doctor away: potential role of MiRNA 146 on macrophages treated with exosomes derived from apples. Biomedicines. 2022;10:415.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trentini M, Zanolla I, Zanotti F, Tiengo E, Licastro D, Dal Monego S, et al. Apple derived exosomes improve collagen type I production and decrease MMPs during aging of the skin through downregulation of the NF-κB. Pathw as Mode Action Cells. 2022;11:3950.


    Google Scholar
     

  • Tinnirello V, Zizzo MG, Conigliaro A, Tabone M, Ganji NR, Cicio A, et al. Industrial-produced lemon nanovesicles ameliorate experimental colitis-associated damages in rats via the activation of anti-inflammatory and antioxidant responses and microbiota modification. Biomed Pharmacother. 2024;174:116514.

    PubMed 

    Google Scholar
     

  • Raimondo S, Urzì O, Meraviglia S, Di Simone M, Corsale AM, Rabienezhad Ganji N, et al. Anti-inflammatory properties of lemon-derived extracellular vesicles are achieved through the Inhibition of ERK/NF-κB signalling pathways. J Cell Mol Med. 2022;26:4195–209.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Lu Y, Chen X, Muthuraj PG, Li X, Pattabiraman M, et al. Protective role of Shiitake Mushroom-Derived Exosome-Like nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced acute liver injury in mice. Nutrients. 2020;12:477.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma L, Ye Z, Guo D, Nie C, Zhou Z. Citri reticulate pericranium-derived extracellular vesicles exert antioxidant and anti-inflammatory properties and enhance the bioactivity of nobiletin by forming EVs-nob nanoparticles. Front Cell Dev Biol. 2024;12:1509123.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Yan X, Zhang Y, Yang M, Ma Y, Zhang Y, et al. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J Nanobiotechnol. 2022;20:206.


    Google Scholar
     

  • Zhang X, Pan Z, Wang Y, Liu P, Hu K. Taraxacum officinale-derived exosome-like nanovesicles modulate gut metabolites to prevent intermittent hypoxia-induced hypertension. Biomed Pharmacother. 2023;161:114572.

    PubMed 

    Google Scholar
     

  • Eom J-Y, Choi S-H, Kim H-J, Kim D, Bae J-H, Kwon G-S, et al. Hemp-Derived nanovesicles protect leaky gut and liver injury in dextran sodium Sulfate-Induced colitis. Int J Mol Sci. 2022;23:9955.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez Fajardo C, Morote L, Moreno-Giménez E, López-López S, Rubio-Moraga Á, Díaz-Guerra MJM, et al. Exosome-like nanoparticles from Arbutus Unedo L. mitigate LPS-induced inflammation via JAK-STAT inactivation. Food Funct. 2024;15:11280–90.

    PubMed 

    Google Scholar
     

  • Zeng Y, Yu S, Lu L, Zhang J, Xu C. Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway. Nanomed. 2024;19:2357–73.


    Google Scholar
     

  • Zhuang X, Deng Z, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles. 2015. https://doi.org/10.3402/jev.v4.28713.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao W, Bian Y, Wang Q, Yin F, Yin L, Zhang Y, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin. 2022;43:645–58.

    PubMed 

    Google Scholar
     

  • Zhang Y, Lu L, Li Y, Liu H, Zhou W, Zhang L. Response surface methodology optimization of Exosome-like nanovesicles extraction from lycium ruthenicum Murray and their inhibitory effects on Aβ-Induced apoptosis and oxidative stress in HT22 cells. Foods. 2024;13:3328.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim DK, Rhee WJ. Antioxidative effects of carrot-derived nanovesicles in cardiomyoblast and neuroblastoma cells. Pharmaceutics. 2021;13:1203.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang F, Yuan M, Shao C, Ji N, Zhang H, Li C. Momordica charantia-derived extracellular vesicles provide antioxidant protection in ulcerative colitis. Molecules. 2023;28:6182.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Xie F, He Q, Gu R, Zhang S, Su X, et al. Hybrid nanovesicles derived from grapes and tomatoes with synergistic antioxidative activity. Biomater Sci. 2024;12:5631–43.

    PubMed 

    Google Scholar
     

  • Wang D, Zhang H, Liao X, Li J, Zeng J, Wang Y, et al. Oral administration of Robinia Pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF-1α- and HIF-2α-mediated lipid peroxidation. J Nanobiotechnol. 2024;22:479.


    Google Scholar
     

  • Kim J-S, Eom J-Y, Kim H-W, Ko J-W, Hong E-J, Kim M-N, et al. Hemp sprout-derived exosome-like nanovesicles as hepatoprotective agents attenuate liver fibrosis. Biomater Sci. 2024;12:5361–71.

    PubMed 

    Google Scholar
     

  • Kim J-S, Kim D, Gil M-C, Kwon H-J, Seo W, Kim D-K, et al. Pomegranate-Derived Exosome-Like nanovesicles alleviate binge Alcohol-Induced leaky gut and liver injury. J Med Food. 2023;26:739–48.


    Google Scholar
     

  • Choi W, Cho JH, Park SH, Kim DS, Lee HP, Kim D, et al. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J Ginseng Res. 2024;48:211–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldini N, Torreggiani E, Roncuzzi L, Perut F, Zini N, Avnet S. Exosome-like nanovesicles isolated from citrus Limon L. Exert antioxidative effect. CPB. 2018;19:877–85.


    Google Scholar
     

  • Lei X, Li H, Chen S, Li B, Xia H, Li J, et al. Tea leaf exosome-like nanoparticles (TELNs) improve oleic acid-induced lipid metabolism by regulating MiRNAs in HepG-2 cells. Bioresour Bioprocess. 2025;12:9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, et al. Strawberry-Derived Exosome-Like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021;11:87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Robertis M, Sarra A, D’Oria V, Mura F, Bordi F, Postorino P, et al. Blueberry-Derived Exosome-Like nanoparticles counter the response to TNF-α-Induced change on gene expression in EA.hy926 cells. Biomolecules. 2020;10:742.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naselli F, Volpes S, Cardinale PS, Palumbo FS, Cancilla F, Lopresti F, et al. New nanovesicles from prickly Pear fruit juice: A resource with antioxidant, Anti-Inflammatory, and nutrigenomic properties. Cells. 2024;13:1756.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape Exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-Induced colitis. Mol Ther. 2013;21:1345–57.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim M, Park JH. Isolation of Aloe saponaria-Derived extracellular vesicles and investigation of their potential for chronic wound healing. Pharmaceutics. 2022;14:1905.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Shin H, Park M, Ahn K, Kim S-J, An S-H. Exosome-Like vesicles from Lithospermum erythrorhizon callus enhanced wound healing by reducing LPS-Induced inflammation. J Microbiol Biotechnol. 2024;35:e2410022.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savcı Y, Kırbaş OK, Bozkurt BT, Abdik EA, Taşlı PN, Şahin F, et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 2021;12:5144–56.

    PubMed 

    Google Scholar
     

  • Şahin F, Koçak P, Güneş MY, Özkan İ, Yıldırım E, Kala EY. In vitro wound healing activity of wheat-derived nanovesicles. Appl Biochem Biotechnol. 2019;188:381–94.

    PubMed 

    Google Scholar
     

  • Seo K, Yoo JH, Kim J, Min SJ, Heo DN, Kwon IK, et al. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation. Nanoscale. 2023;15:5798–808.

    PubMed 

    Google Scholar
     

  • Park Y-S, Kim H-W, Hwang J-H, Eom J-Y, Kim D-H, Park J, et al. Plum-Derived Exosome-like nanovesicles induce differentiation of osteoblasts and reduction of osteoclast activation. Nutrients. 2023;15:2107.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang J-H, Park Y-S, Kim H-S, Kim D, Lee S-H, Lee C-H, et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice. J Controlled Release. 2023;355:184–98.


    Google Scholar
     

  • Sim Y, Seo H-J, Kim D, Lee S-H, Kwon J, Kwun I-S, et al. The effect of Apple-Derived nanovesicles on the osteoblastogenesis of osteoblastic MC3T3-E1 cells. J Med Food. 2023;26:49–58.

    PubMed 

    Google Scholar
     

  • Zhan W, Deng M, Huang X, Xie D, Gao X, Chen J, et al. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J Controlled Release. 2023;364:644–53.


    Google Scholar
     

  • Zhao Q, Feng J, Liu F, Liang Q, Xie M, Dong J, et al. Rhizoma Drynariae-derived nanovesicles reverse osteoporosis by potentiating osteogenic differentiation of human bone marrow mesenchymal stem cells via targeting era signaling. Acta Pharm Sinica B. 2024;14:2210–27.


    Google Scholar
     

  • Di Stefano M, Polizzi A, Santonocito S, Romano A, Lombardi T, Isola G. Impact of oral Microbiome in periodontal health and periodontitis: A critical review on prevention and treatment. Int J Mol Sci. 2022;23:5142.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27:409–19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasmi A, Gasmi Benahmed A, Noor S, Mujawdiya P. Porphyromonas gingivalis in the development of periodontitis: impact on dysbiosis and inflammation. Arch Razi Inst. 2022;77:1539–51.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Signat B, Roques C, Poulet P, Duffaut D. Fusobacterium nucleatumin periodontal health and disease. Curr Issues Mol Biol. 2011;13:25–36.

    PubMed 

    Google Scholar
     

  • Liu H, Liu Y, Fan W, Fan B. Fusobacterium nucleatum triggers Proinflammatory cell death via Z-DNA binding protein 1 in apical periodontitis. Cell Commun Signal. 2022;20:196.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veras EL, Castro dos Santos N, Souza JGS, Figueiredo LC, Retamal-Valdes B, Barão VAR, et al. Newly identified pathogens in periodontitis: evidence from an association and an elimination study. J Oral Microbiol. 2023;15:2213111.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Lee JY, Park J-Y, Kim Y, Kang C-H. Lacticaseibacillus rhamnosus MG4706 suppresses periodontitis in osteoclasts, Inflammation-Inducing cells, and Ligature-Induced rats. Nutrients. 2022;14:4869.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou K, Xie J, Su Y, Fang J. Lactobacillus reuteri for chronic periodontitis: focus on underlying mechanisms and future perspectives. Biotechnol Genet Eng Rev. 2023;40:1–28.

    PubMed 

    Google Scholar
     

  • Naureen Z, Medori MC, DHULI K, Donato K, Connelly ST, Bellinato F, et al. Polyphenols and Lactobacillus reuteri in oral health. J Prev Med Hyg. 2022;63:E246–54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han N, Liu Y, Du J, Xu J, Guo L, Liu Y. Regulation of the host immune microenvironment in periodontitis and periodontal bone remodeling. Int J Mol Sci. 2023;24: 3158.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Zheng C, Yang J, Li B. Intersection between macrophages and periodontal pathogens in periodontitis. J Leukoc Biol. 2021;110:577–83.

    PubMed 

    Google Scholar
     

  • Jiang J, Wang F, Huang W, Sun J, Ye Y, Ou J, et al. Mobile mechanical signal generator for macrophage polarization. Exploration. 2023;3:20220147.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Tao W, Xie C, Chen Q, Zhao Y, Zhang L, et al. Interleukin-37 ameliorates periodontitis development by inhibiting NLRP3 inflammasome activation and modulating M1/M2 macrophage polarization. J Periodontal Res. 2023;59:128–39.

    PubMed 

    Google Scholar
     

  • Liu Q, Zhang J, Liu X, Gao J. Role of growth hormone in maturation and activation of dendritic cells via miR‐200a and the Keap1/Nrf2 pathway. Cell Prolif. 2015;48:573–81.

    PubMed 

    Google Scholar
     

  • El-Awady AR, Elashiry M, Morandini AC, Meghil MM, Cutler CW. Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontol. 2000. 2022;89:41–50.

  • Meghil MM, Ghaly M, Cutler CW. A Tale of two fimbriae: how invasion of dendritic cells by Porphyromonas gingivalis disrupts DC maturation and depolarizes the T-Cell-Mediated immune response. Pathogens. 2022;11:328.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu L, Luo Z, Chen Y, Yan Z, Fu J, Jiang Y, et al. Butyrate inhibits dendritic cell activation and alleviates periodontitis. J Dent Res. 2023;102:1326–36.

    PubMed 

    Google Scholar
     

  • Figueredo CM, Lira-Junior R, Love RM. T and B cells in periodontal disease: new functions in A complex scenario. Int J Mol Sci. 2019;20:3949.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu H, He W. Ginger: a representative material of herb-derived exosome-like nanoparticles. Front Nutr. 2023;10:1223349.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sczepanik FSC, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, et al. Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontol 2000. 2020;84:45–68.

    PubMed 

    Google Scholar
     

  • Pouliou C, Piperi C. Advances of oxidative stress impact in periodontitis: biomarkers and effective targeting options. Curr Med Chem. 2024;31:6187–203.

    PubMed 

    Google Scholar
     

  • Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells. 2022;11:552.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Andrukhov O, Rausch-Fan X. Oxidative stress and antioxidant system in periodontitis. Front Physiol. 2017;8:910.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ying S, Tan M, Feng G, Kuang Y, Chen D, Li J, et al. Low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress. Theranostics. 2020;10:9789–807.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Zhao J, Ding H, Qiu M, Xue L, Ge D, et al. Applications of plant-derived extracellular vesicles in medicine. MedComm. 2024. https://doi.org/10.1002/mco2.741.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21:4777.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: from anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases. Biochimie. 2020;171–172:103–9.

    PubMed 

    Google Scholar
     

  • Xu T, Xie K, Wang C, Ivanovski S, Zhou Y. Immunomodulatory nanotherapeutic approaches for periodontal tissue regeneration. Nanoscale. 2023;15:5992–6008.

    PubMed 

    Google Scholar
     

  • de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration. J Periodontal Res. 2017;52:965–74.

    PubMed 

    Google Scholar
     

  • Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015;2015:1–10.


    Google Scholar
     

  • Artese L, Piattelli A, de Gouveia Cardoso LA, Ferrari DS, Onuma T, Piccirilli M, et al. Immunoexpression of angiogenesis, nitric oxide synthase, and proliferation markers in gingival samples of patients with aggressive and chronic periodontitis. J Periodontol. 2010;81:718–26.

    PubMed 

    Google Scholar
     

  • Mohd Nor NH, Berahim Z, Azlina A, Mokhtar KI, Kannan TP. Identification and characterization of intraoral and dermal fibroblasts revisited. Curr Stem Cell Res Ther. 2017;12:675–81.

    PubMed 

    Google Scholar
     

  • Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000. 2015;69:46–67.

    PubMed 

    Google Scholar
     

  • Herrera D, Sanz M, Shapira L, Brotons C, Chapple I, Frese T, et al. Periodontal diseases and cardiovascular diseases, diabetes, and respiratory diseases: summary of the consensus report by the European federation of periodontology and WONCA Europe. Eur J Gen Pract. 2024;30:2320120.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamazaki K, Kamada N. Exploring the oral-gut linkage: interrelationship between oral and systemic diseases. Mucosal Immunol. 2024;17:147–53.

    PubMed 

    Google Scholar
     

  • Horliana ACRT, Chambrone L, Foz AM, Artese HPC, Rabelo M, de Pannuti S. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: A systematic review. PLoS ONE. 2014;9:e98271.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrizales-Sepúlveda EF, Ordaz-Farías A, Vera-Pineda R, Flores-Ramírez R. Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart Lung Circ. 2018;27:1327–34.

    PubMed 

    Google Scholar
     

  • Wu P, Wu W, Zhang S, Han J, Liu C, Yu H, et al. Therapeutic potential and pharmacological significance of extracellular vesicles derived from traditional medicinal plants. Front Pharmacol. 2023;14:1272241.https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1272241/full

  • Mu N, Li J, Zeng L, You J, Li R, Qin A, et al. Plant-Derived Exosome-Like nanovesicles: current progress and prospects. Int J Nanomed. 2023;18:4987–5009.


    Google Scholar
     

  • Sundaram K, Teng Y, Mu J, Xu Q, Xu F, Sriwastva MK, et al. Outer membrane vesicles released from Garlic Exosome-like nanoparticles (GaELNs) train gut bacteria that reverses type 2 diabetes via the gut‐Brain axis. Small. 2024;20:e2308680.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou J, Song Q, Shaw PC, Wu Y, Zuo Z, Yu R. Tangerine Peel-Derived Exosome-Like nanovesicles alleviate hepatic steatosis induced by type 2 diabetes: evidenced by regulating lipid metabolism and intestinal microflora. Int J Nanomed. 2024;19:10023–43.


    Google Scholar
     

  • Miya MB, Ashutosh, Maulishree, Chandra Gupta P, Pathak V, Mishra R, et al. Therapeutic effects of OXY- exo in diabetic wound injury. Biochem Biophys Res Commun. 2024;731:150398.

    PubMed 

    Google Scholar
     

  • He C, Wang K, Xia J, Qian D, Guo J, Zhong L, et al. Natural exosomes-like nanoparticles in mung bean sprouts possesses anti-diabetic effects via activation of PI3K/Akt/GLUT4/GSK-3β signaling pathway. J Nanobiotechnol. 2023;21:349.


    Google Scholar
     

  • Tan M, Liu Y, Xu Y, Yan G, Zhou N, Chen H, et al. Plant-Derived exosomes as novel nanotherapeutics contrive Glycolysis Reprogramming-Mediated angiogenesis for diabetic ulcer healing. Biomater Res. 2024;28:0035.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajaj G, Choudhary D, Singh V, Priyadarshi N, Garg P, Mantri SS, et al. MicroRNAs Dependent G‐ELNs Based Intervention Improves Glucose and Fatty Acid Metabolism While Protecting Pancreatic β‐Cells in Type 2 Diabetic Mice. Small. 2025;21:e2409501.

  • Garcia-Ibañez P, Roses C, Agudelo A, Milagro FI, Barceló AM, Viadel B, et al. The influence of red cabbage extract nanoencapsulated with brassica plasma membrane vesicles on the gut Microbiome of obese volunteers. Foods. 2021;10:1038.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JH, Kang SJ, Rhee WJ. Exploiting Spinach-Derived extracellular vesicles for Anti-Obesity therapy through lipid accumulation Inhibition. Adv Ther. 2024;n/a:2400150.


    Google Scholar
     

  • Pang W, Zuo Z, Sun W, Zhang Z, Wang J, Wang Y, et al. Kidney bean derived exosome-like nanovesicles ameliorate high-fat diet-induced obesity via reshaping gut microbiota. J Funct Foods. 2024;113:105997.


    Google Scholar
     

  • Bian Y, Li W, Jiang X, Yin F, Yin L, Zhang Y, et al. Garlic-derived exosomes carrying miR-396e shapes macrophage metabolic reprograming to mitigate the inflammatory response in obese adipose tissue. J Nutr Biochem. 2023;113:109249.

    PubMed 

    Google Scholar
     

  • Dolma L, Damodaran A, Panonnummal R, Nair SC. Exosomes isolated from citrus lemon: a promising candidate for the treatment of alzheimer’s disease. Ther Delivery. 2024;15:507–19.


    Google Scholar
     

  • Timms K, Holder B, Day A, Mclaughlin J, Forbes KA, Westwood M. Watermelon-Derived extracellular vesicles influence human ex vivo placental cell behavior by altering intestinal secretions. Mol Nutr Food Res. 2022;66:e2200013.

    PubMed 

    Google Scholar
     

  • Shinjo T, Nishimura F. The bidirectional association between diabetes and periodontitis, from basic to clinical. Jpn Dent Sci Rev. 2024;60:15–21.

    PubMed 

    Google Scholar
     

  • Mirnic J, Djuric M, Brkic S, Gusic I, Stojilkovic M, Tadic A, et al. Pathogenic mechanisms that May link periodontal disease and type 2 diabetes Mellitus—The role of oxidative stress. Int J Mol Sci. 2024;25:9806.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16:545–55.

    PubMed 

    Google Scholar
     

  • Gordon H, Salim N, Tong S, Walker S, De Silva M, Cluver C, et al. Metformin use and preeclampsia risk in women with diabetes: a two-country cohort analysis. BMC Med. 2024;22:418.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nabrdalik K, Hendel M, Irlik K, Kwiendacz H, Łoniewski I, Bucci T, et al. Gastrointestinal adverse events of metformin treatment in patients with type 2 diabetes mellitus: a systematic review and meta-analysis with meta-regression of observational studies. BMC Endocr Disord. 2024;24:206.https://bmcendocrdisord.biomedcentral.com/articles/10.1186/s12902-024-01727-w

  • Jin E, Yang Y, Cong S, Chen D, Chen R, Zhang J, et al. Lemon-derived nanoparticle-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J Nanobiotechnol. 2025;23:68.


    Google Scholar
     

  • Guo X, Li X, Liao C, Feng X, He T. Periodontal disease and subsequent risk of cardiovascular outcome and all-cause mortality: A meta-analysis of prospective studies. PLoS ONE. 2023;18:e0290545.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Yang Z, Wang Y, Gao H, Wang Y, Zhang Q. Association between periodontitis and carotid artery calcification: A systematic review and Meta-Analysis. Biomed Res Int. 2021;2021:1–9.


    Google Scholar
     

  • Shang J, Liu H, Zheng Y, Zhang Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front Physiol. 2023;14:1210449.https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1210449/full

  • Joshi C, Bapat R, Anderson W, Dawson D, Hijazi K, Cherukara G. Detection of periodontal microorganisms in coronary atheromatous plaque specimens of myocardial infarction patients: a systematic review and meta-analysis. Trends Cardiovasc Med. 2021;31:69–82.

    PubMed 

    Google Scholar
     

  • Libby P. Inflammation in atherosclerosis. Arterioscler, thromb. Vasc Biol. 2012;32:2045–51.


    Google Scholar
     

  • Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Li Q, Shi H, Li F, Duan Y, Guo Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother. 2024;178:117084.

    PubMed 

    Google Scholar
     

  • Wu Y, Xing L, Lu L, Liu S, Zhao D, Lin L, et al. Alterations in the salivary Microbiome and metabolism in patients with carotid atherosclerosis from rural Northeast China. J Am Heart Assoc. 2024;13:e034014.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reytor-González C, Parise-Vasco JM, González N, Simancas-Racines A, Zambrano-Villacres R, Zambrano AK, et al. Obesity and periodontitis: a comprehensive review of their interconnected pathophysiology and clinical implications. Front Nutr. 2024;11:1440216.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao P, Xu A, Leung WK. Obesity, bone loss, and periodontitis: the interlink. Biomolecules. 2022;12:865.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suvan JE, Petrie A, Nibali L, Darbar U, Rakmanee T, Donos N, et al. Association between overweight/obesity and increased risk of periodontitis. J Clin Periodontol. 2015;42:733–9.

    PubMed 

    Google Scholar
     

  • Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discovery. 2022;21:201–23.

    PubMed 

    Google Scholar
     

  • Chae Y-R, Lee H-B, Lee YR, Yoo G, Lee E, Park M, et al. Ameliorating effects of orostachys Japonica against high-fat diet-induced obesity and gut dysbiosis. J Ethnopharmacol. 2024;333:118443.

    PubMed 

    Google Scholar
     

  • Dong S, Wu S, Li L, Hao F, Wu J, Liao Z, et al. Alleviation of lipid metabolic dysfunction through regulation of intestinal bacteriophages and bacteria by green tea polyphenols in ob/ob mice. Food Chem. 2024;456:139988.

    PubMed 

    Google Scholar
     

  • Wang J, Zhuang P, Lin B, Li H, Zheng J, Tang W, et al. Gut microbiota profiling in obese children from southeastern China. BMC Pediatr. 2024;24:193.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: comparative pathology of animal models for COVID-19. Virulence. 2024;15:2316438.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molina A, Huck O, Herrera D, Montero E. The association between respiratory diseases and periodontitis: a systematic review and meta-analysis. J Clin Periodontol. 2023;50:842–87.

    PubMed 

    Google Scholar
     

  • Kalarikkal SP, Sundaram GM. Edible plant-derived Exosomal micrornas: exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2. Toxicol Appl Pharmacol. 2021;414:115425.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology‐facilitated vaccine development during the coronavirus disease 2019 (COVID‐19) pandemic. Exploration. 2022;2:20210082.https://onlinelibrary.wiley.com/doi/10.1002/EXP.20210082

  • Gai C, Pomatto MAC, Deregibus MC, Dieci M, Piga A, Camussi G. Edible plant-derived extracellular vesicles for oral mRNA vaccine delivery. Nato Adv Sci Inst Se. 2024;12:200.


    Google Scholar
     

  • Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, Grange C, et al. Plant-Derived extracellular vesicles as a delivery platform for RNA-Based vaccine: feasibility study of an oral and intranasal SARS-CoV-2 vaccine. Pharmaceutics. 2023;15:974.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, De Rosa FG, et al. Oral delivery of mRNA vaccine by Plant-Derived extracellular vesicle carriers. Cells. 2023;12:1826.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raimondo S, Giavaresi G, Lorico A, Alessandro R. Extracellular vesicles as biological shuttles for targeted therapies. Int J Mol Sci. 2019;20:1848.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbarisi A, Visconti V, Lauritano D, Cremonini F, Caccianiga G, Ceraulo S. Correlation between periodontitis and onset of Alzheimer’s disease: a literature review. Dentistry J. 2024;12:331.


    Google Scholar
     

  • Soiniemi L, Solje E, Suominen AL, Kanninen KM, Kullaa AM. The association between oral diseases and neurodegenerative disorders. Journal of Alzheimer’s Disease. 2024;102:577–86.

  • Pawar S, Rauf MA, Abdelhady H, Iyer AK. Tau‐targeting nanoparticles for treatment of Alzheimer’s disease. Exploration. 2025;5:20230137.

    PubMed 

    Google Scholar
     

  • Malaguarnera M, Cabrera-Pastor A. Emerging role of extracellular vesicles as biomarkers in neurodegenerative diseases and their clinical and therapeutic potential in central nervous system pathologies. Int J Mol Sci. 2024;25:10068.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu J, Wu J, Tang B, Zhang Z, Wei F, Yu D, et al. Effects of different periodontal interventions on the risk of adverse pregnancy outcomes in pregnant women: a systematic review and network meta-analysis of randomized controlled trials. Front Public Health. 2024;12:1373691.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vivares-Builes AM, Rangel-Rincón LJ, Botero JE, Agudelo-Suárez AA. Gaps in knowledge about the association between maternal periodontitis and adverse obstetric outcomes: an umbrella review. J Evid Based Dent Pract. 2018;18:1–27.

    PubMed 

    Google Scholar
     

  • Bruić M, Pirković A, Borozan S, Nacka Aleksić M, Jovanović Krivokuća M, Spremo-Potparević B. Antioxidative and anti-inflammatory effects of taxifolin in H2O2-induced oxidative stress in HTR-8/SVneo trophoblast cell line. Reprod Toxicol. 2024;126:108585.

    PubMed 

    Google Scholar
     

  • Li M, Wu X, An P, Dang H, Liu Y, Liu R. Effects of Resveratrol on autophagy and the expression of inflammasomes in a placental trophoblast oxidative stress model. Life Sci. 2020;256:117890.

    PubMed 

    Google Scholar
     

  • Holder B, Jones T, Sancho Shimizu V, Rice TF, Donaldson B, Bouqueau M, et al. Macrophage exosomes induce placental inflammatory cytokines: A novel mode of Maternal–Placental messaging. Traffic. 2016;17:168–78.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitamoto S, Kamada N. Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms. Periodontol 2000. 2022;89:142–53.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamazaki K. Oral-gut axis as a novel biological mechanism linking periodontal disease and systemic diseases: A review. Japanese Dent Sci Rev. 2023;59:273–80.


    Google Scholar
     

  • Jia X, Yang R, Li J, Zhao L, Zhou X, Xu X. Gut-bone axis: a non-negligible contributor to periodontitis. Front Cell Infect Microbiol. 2021;11:752708.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han N, Li X, Du J, Xu J, Guo L, Liu Y. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res. 2023;58:1139–47.

    PubMed 

    Google Scholar
     

  • Wang X, Liu Y, Dong X, Duan T, Wang C, Wang L, et al. peu-MIR2916-p3-enriched Garlic exosomes ameliorate murine colitis by reshaping gut microbiota, especially by boosting the anti-colitic bacteroides Thetaiotaomicron. Pharmacol Res. 2024;200:107071.

    PubMed 

    Google Scholar
     

  • Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park I, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Controlled Release. 2023;353:1127–49.


    Google Scholar
     

  • Kumar MN, Kalarikkal SP, Jayaram Y, Narayanan J, Sundaram GM. Protocol to produce plant-based hybrid nanovesicles from fresh turmeric and pepper using polyethylene glycol. STAR Protoc. 2024;5:102924.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu X, Xu Z, Shu F, Wang Y, Han Y, Yang X, et al. Reactive oxygen species responsive multifunctional fusion extracellular nanovesicles: prospective treatments for acute heart transplant rejection. Adv Mater. 2024;36:2406758.


    Google Scholar
     

  • Song J, Jung H, You G, Mok H. Cancer-Cell‐Derived hybrid vesicles from MCF‐7 and HeLa cells for Dual‐Homotypic targeting of anticancer drugs. Macromol Biosci. 2021;21:2100067.


    Google Scholar
     

  • Leng Y, Yang L, Zhu H, Li D, Pan S, Yuan F. Stability of blueberry extracellular vesicles and their gene regulation effects in intestinal Caco-2 cells. Biomolecules. 2023;13:1412.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemidkanam V, Chaichanawongsaroj N. Characterizing Kaempferia parviflora extracellular vesicles, a nanomedicine candidate. PLoS ONE. 2022;17:e0262884.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Z, Lacombe J, Simon L, Sanchez-Ballester NM, Khanishayan A, Shaik N, et al. Physical, biochemical, and biological characterization of olive-derived lipid nanovesicles for drug delivery applications. J Nanobiotechnol. 2024;22:720.


    Google Scholar
     

  • Jang J, Jeong H, Jang E, Kim E, Yoon Y, Jang S, et al. Isolation of high-purity and high-stability exosomes from ginseng. Front Plant Sci. 2022;13:1064412. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1064412/full

  • Kim K, Park J, Sohn Y, Oh C-E, Park J-H, Yuk J-M, et al. Stability of plant Leaf-Derived extracellular vesicles according to preservative and storage temperature. Pharmaceutics. 2022;14:457.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai-Harada Y, El Itawi H, Komuro H, Harada M. Evaluation of EV storage buffer for efficient preservation of engineered extracellular vesicles. Int J Mol Sci. 2023;24:12841.

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Advances Current directions diseases Future Journal Nanobiotechnology periodontitis plantderived potential Systemic treating vesicles
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    This tiny chip could change the future of quantum computing

    December 27, 2025

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Databricks Spatial Joins Now 17x Faster Out-of-the-Box

    December 27, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Cisco Meraki + PagerDuty Integration for Faster Incident Response

    December 27, 2025

    This tiny chip could change the future of quantum computing

    December 27, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Databricks Spatial Joins Now 17x Faster Out-of-the-Box

    December 27, 2025

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.