Kwon T, Lamster IB, Levin L. Current concepts in the management of periodontitis. Int Dent J. 2021;71:462–76.
Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000. 2017;75:7–23.
Trindade D, Carvalho R, Machado V, Chambrone L, Mendes JJ, Botelho J. Prevalence of periodontitis in dentate people between 2011 and 2020: a systematic review and meta-analysis of epidemiological studies. J Clin Periodontol. 2023;50:604–26.
Mainas G, Ide M, Rizzo M, Magan-Fernandez A, Mesa F, Nibali L. Managing the systemic impact of periodontitis. Med (Mex). 2022;58:621.
Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000. 2017;75:152–88.
HAAS AN, FURLANETO F, GAIO EJ, GOMES SC, PALIOTO DB, CASTILHO RM, et al. New tendencies in non-surgical periodontal therapy. Braz Oral Res. 2021;35:e095.
Cobb CM. Lasers and the treatment of periodontitis: the essence and the noise. Periodontol. 2000. 2017;75:205–95.
Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404.
Halperin W, Jensen WA. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res. 1967;18:428–43.
Zhao B, Lin H, Jiang X, Li W, Gao Y, Li M, et al. Exosome-like nanoparticles derived from fruits, vegetables, and herbs: innovative strategies of therapeutic and drug delivery. Theranostics. 2024;14:4598–621.
Kim J, Zhu Y, Chen S, Wang D, Zhang S, Xia J, et al. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood–brain-barrier penetration and tumor microenvironment modulation. J Nanobiotechnol. 2023;21:253.
Subudhi PD, Bihari C, Sarin SK, Baweja S. Emerging role of edible Exosomes-Like nanoparticles (ELNs) as hepatoprotective agents. Nanotheranostics. 2022;6:365–75.
Dad HA, Gu T-W, Zhu A-Q, Huang L-Q, Peng L-H. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29:13–31.
Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience. 2019;21:308–27.
Wang X, Tian R, Liang C, Jia Y, Zhao L, Xie Q, et al. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management. Biomaterials. 2025;313:122804.
Sundaram K, Mu J, Kumar A, Behera J, Lei C, Sriwastva MK, et al. Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics. 2022;12:1220–46.
Cao M, Diao N, Cai X, Chen X, Xiao Y, Guo C, et al. Plant exosome nanovesicles (PENs): green delivery platforms. Mater Horiz. 2023;10:3879–94.
Li D, Tang Q, Yang M, Xu H, Zhu M, Zhang Y, et al. Plant-derived exosomal nanoparticles: potential therapeutic for inflammatory bowel disease. Nanoscale Adv. 2023;5:3575–88.
Tan X, Xu Y, Zhou S, Pan M, Cao Y, Cai X, et al. Advances in the study of Plant-Derived Vesicle-Like nanoparticles in inflammatory diseases. J Inflamm Res. 2023;16:4363–72.
Chen X, Ji S, Yan Y, Lin S, He L, Huang X, et al. Engineered Plant-Derived nanovesicles facilitate tumor therapy: natural bioactivity plus drug controlled release platform. Int J Nanomed. 2023;18:4779–804.
Zhang Q, Jeppesen DK, Higginbotham JN, Franklin JL, Coffey RJ. Comprehensive isolation of extracellular vesicles and nanoparticles. Nat Protoc. 2023;18:1462–87.
Bokka R, Ramos AP, Fiume I, Manno M, Raccosta S, Turiák L, et al. Biomanufacturing of tomato-derived nanovesicles. Foods. 2020;9: 1852.
Pinedo M, de la Canal L, de Marcos Lousa C. A call for rigor and standardization in plant extracellular vesicle research. J Extracell Vesicles. 2021;10:e12048.
Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf Apoplast carry Stress-Response proteins. Plant Physiol. 2017;173:728–41.
Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J ImmunoTher Cancer. 2019;7:326.
Zhuang W-R, Wang Y, Lei Y, Zuo L, Jiang A, Wu G, et al. Phytochemical engineered bacterial outer membrane vesicles for photodynamic effects promoted immunotherapy. Nano Lett. 2022;22:4491–500.
Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. Biogenesis of plant prevacuolar multivesicular bodies. Mol Plant. 2016;9:774–86.
Farley JT, Eldahshoury MK, de Marcos Lousa C. Unconventional secretion of plant extracellular vesicles and their benefits to human health: A mini review. Front Cell Dev Biol. 2022;10:883841.
Alfieri M, Leone A, Ambrosone A. Plant-derived nano and microvesicles for human health and therapeutic potential in nanomedicine. Pharmaceutics. 2021;13(4): 13:498.
Yugay Y, Tsydeneshieva Z, Rusapetova T, Grischenko O, Mironova A, Bulgakov D, et al. Isolation and characterization of extracellular vesicles from Arabidopsis Thaliana cell culture and investigation of the specificities of their biogenesis. Plants. 2023;12:3604.
Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, et al. EXPO, an Exocyst-Positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell. 2010;22:4009–30.
Lin Y, DING Y, Wang J, Kung C-H, Zhuang X, Yin Z et al. EXPO and autophagosomes are distinct organelles in plants. Plant Physiol. 2015;169:pp.00953.2015.
Wang Y, Wu Y, Shen S, Liu Y, Xia Y, Xia H, et al. Engineered plant extracellular vesicles for natural delivery across physiological barriers. Food Funct. 2024;15:1737–57.
Cui Y, Cao W, He Y, Zhao Q, Wakazaki M, Zhuang X, et al. A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nat Plants. 2018;5:95–105.
Ito Y, Taniguchi K, Kuranaga Y, Eid N, Inomata Y, Lee S-W, et al. Uptake of MicroRNAs from Exosome-Like nanovesicles of edible plant juice by rat enterocytes. Int J Mol Sci. 2021;22:3749.
Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, et al. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 2009;23:2496–506.
Manjithaya R, Anjard C, Loomis WF, Subramani S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol. 2010;188:537–46.
Anderson CT, Kieber JJ. Dynamic construction, perception, and remodeling of plant cell walls. Annu Rev Plant Biol. 2020;71:39–69.
Adani F, Papa G, Schievano A, Cardinale G, D’Imporzano G, Tambone F. Nanoscale structure of the cell wall protecting cellulose from enzyme attack. Environ Sci Technol. 2011;45:1107–13.
de la Canal L, Pinedo M. Extracellular vesicles: a missing component in plant cell wall remodeling. J Exp Bot. 2018;69:4655–8.
Ruf A, Oberkofler L, Robatzek S, Weiberg A. Spotlight on plant RNA-containing extracellular vesicles. Curr Opin Plant Biol. 2022;69:102272.
Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13:620–30.
Berger E, Colosetti P, Jalabert A, Meugnier E, Wiklander OPB, Jouhet J, et al. Use of nanovesicles from orange juice to reverse Diet-Induced gut modifications in Diet-Induced obese mice. Mol Ther Methods Clin Dev. 2020;18:880–92.
Ye L, Gao Y, Mok SWF, Liao W, Wang Y, Chen C, et al. Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia. J Nanobiotechnol. 2024;22:190.
Wang J, Zhang T, Gu R, Ke Y, Zhang S, Su X, et al. Development and evaluation of reconstructed nanovesicles from turmeric for multifaceted obesity intervention. ACS Nano. 2024;18:23117–35.
Zhang Y, Zhang X, Kai T, Zhang L, Li A. Lycium ruthenicum Murray derived exosome-like nanovesicles inhibit Aβ-induced apoptosis in PC12 cells via MAPK and PI3K/AKT signaling pathways. Int J Biol Macromol. 2024;277:134309.
Sabatke B, Rossi IV, Sana A, Bonato LB, Ramirez MI. Extracellular vesicles biogenesis and uptake concepts: A comprehensive guide to studying host–pathogen communication. Mol Microbiol. 2024;122:613–29.https://onlinelibrary.wiley.com/doi/10.1111/mmi.15168
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47.
Itakura S, Shohji A, Amagai S, Kitamura M, Takayama K, Sugibayashi K, et al. Gene knockdown in HaCaT cells by small interfering RNAs entrapped in grapefruit-derived extracellular vesicles using a microfluidic device. Sci Rep. 2023;13:3102.
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, et al. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. Phytomedicine. 2024;135: 156087.
Chaya T, Banerjee A, Rutter BD, Adekanye D, Ross J, Hu G, et al. The extracellular vesicle proteomes of Sorghum bicolor and Arabidopsis Thaliana are partially conserved. Plant Physiol. 2024;194:1481–97.
Jokhio S, Peng I, Peng C-A. Extracellular vesicles isolated from Arabidopsis Thaliana leaves reveal characteristics of mammalian exosomes. Protoplasma. 2024;261:1025–33.
Vestuto V, Conte M, Vietri M, Mensitieri F, Santoro V, Di Muro A, et al. Multiomic profiling and neuroprotective bioactivity of salvia hairy root-derived extracellular vesicles in a cellular model of parkinson’s disease. Int J Nanomedicine. 2024;19:9373–93.
Liu N-J, Wang N, Bao J-J, Zhu H-X, Wang L-J, Chen X-Y. Lipidomic analysis reveals the importance of GIPCs in Arabidopsis leaf extracellular vesicles. Mol Plant. 2020;13:1523–32.
Wang S, He B, Wu H, Cai Q, Ramírez-Sánchez O, Abreu-Goodger C, et al. Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection. Cell Host Microbe. 2024;32:93–e1056.
Zhou S, Huang P, Cao Y, Hua X, Yang Y, Liu S. Garlic-Derived Exosome-like Nanovesicles-Based wound dressing for Staphylococcus aureus infection visualization and treatment. ACS Appl Bio Mater. 2024;7:1888–98.
Shkryl Y, Tsydeneshieva Z, Menchinskaya E, Rusapetova T, Grishchenko O, Mironova A, et al. Exosome-like nanoparticles, high in Trans-δ-Viniferin derivatives, produced from grape cell cultures: preparation, characterization, and anticancer properties. Biomedicines. 2024;12:2142.
Yang M, Luo Q, Chen X, Chen F. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma. J Nanobiotechnol. 2021;19:259. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-021-00995-1
Karamanidou T, Krommydas K, Karanikou M, Tsamos D, Michalakis K, Kletsas D, et al. Biological activities of Citrus-derived extracellular vesicles on human cells: the role of preservation. Curr Issues Mol Biol. 2024;46:5812–24.
Chincinska IA. Leaf infiltration in plant science: old method, new possibilities. Plant Methods. 2021;17:83.
Freire FBS, Morais EG, Daloso DM. Toward the Apoplast metabolome: Establishing a leaf Apoplast collection approach suitable for metabolomics analysis. Plant Physiol Biochem. 2024;215:109080.
Dora S, Terrett OM, Sánchez-Rodríguez C. Plant–microbe interactions in the apoplast: communication at the plant cell wall. Plant Cell. 2022;34:1532–50.
Regente M, Corti-Monzón G, Maldonado AM, Pinedo M, Jorrín J, de la Canal L. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett. 2009;583:3363–6.
Rutter B, Rutter K, Innes R. Isolation and quantification of plant extracellular vesicles. Bio-Protocol. 2017;7: e2533.
Adekanye D, Chaya T, Caplan J. Sorghum bicolor extracellular vesicle isolation, labeling, and correlative light and electron microscopy. BIO-PROTOCOL. 2024;14: e5083.
Kingsbury NJ, McDonald KA. Quantitative evaluation of E1 endoglucanase recovery from tobacco leaves using the vacuum infiltration-centrifugation method. Biomed Res Int. 2014;2014:1–10.
Kilasoniya A, Garaeva L, Shtam T, Spitsyna A, Putevich E, Moreno-Chamba B, et al. Potential of plant exosome vesicles from grapefruit (Citrus × paradisi) and tomato (Solanum lycopersicum) juices as functional ingredients and targeted drug delivery vehicles. Antioxidants. 2023;12:943.
Ye C, Yan C, Bian S-J, Li X-R, Li Y, Wang K-X, et al. Momordica charantia L.-derived exosome-like nanovesicles stabilize p62 expression to ameliorate doxorubicin cardiotoxicity. J Nanobiotechnol. 2024;22:464.https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02705-z
Wang J, Ran B, Ma W, Teng Y, Bello MG, Chen L, et al. Development of ginger-derived extracellular vesicles thermosensitive gel for UVA-induced photodamage of skin. J Drug Delivery Sci Technol. 2024;96:105649.
Zeng Y-B, Deng X, Shen L-S, Yang Y, Zhou X, Ye L, et al. Advances in plant-derived extracellular vesicles: isolation, composition, and biological functions. Food Funct. 2024;15:11319–41. https://pubs.rsc.org/en/content/articlelanding/2024/fo/d4fo04321a
Liu Y, Wu S, Koo Y, Yang A, Dai Y, Khant H, et al. Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles. Nanomed Nanotechnol Biol Med. 2020;29:102271.
Ferber E, Gerhards J, Sauer M, Krischke M, Dittrich MT, Müller T, et al. Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb. Front Plant Sci. 2020;11:887.https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.00887/full
Garaeva L, Kamyshinsky R, Kil Y, Varfolomeeva E, Verlov N, Komarova E, et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021;11:6489.
Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, et al. Study on supramolecules in traditional Chinese medicine decoction. Molecules. 2022;27:3268.
Li T, Wang H, Bi W, Su Y, Xiong Y, Wang S, et al. Nano-characterization, composition analysis, and anti-inflammatory activity of American-ginseng-derived vesicle-like nanoparticles. Molecules. 2024;29:3443.
Li X, Liang Z, Du J, Wang Z, Mei S, Li Z, et al. Herbal decoctosome is a novel form of medicine. Sci China Life Sci. 2019;62:333–48.
Sánchez‐López CM, Soler C, Garzo E, Fereres A, Pérez‐Bermúdez P, Marcilla A. Phloem sap from melon plants contains extracellular vesicles that carry active proteasomes which increase in response to aphid infestation. J Extracell Vesicles. 2024;13: e12517.
Altıntaş Ö, Saylan Y. Exploring the versatility of exosomes: A review on isolation, characterization, detection methods, and diverse applications. Anal Chem. 2023;95:16029–48.
Rivero-Pino F, Marquez-Paradas E, Montserrat-de la Paz S. Food-derived vesicles as Immunomodulatory drivers: current knowledge, gaps, and perspectives. Food Chem. 2024;457:140168.
Clos-Sansalvador M, Monguió-Tortajada M, Roura S, Franquesa M, Borràs FE. Commonly used methods for extracellular vesicles’ enrichment: implications in downstream analyses and use. Eur J Cell Biol. 2022;101:151227.
Wang W, Sun H, Duan H, Sheng G, Tian N, Liu D, et al. Isolation and usage of exosomes in central nervous system diseases. CNS Neurosci Ther. 2024;30: e14677.
Huang Y, Wang S, Cai Q, Jin H. Effective methods for isolation and purification of extracellular vesicles from plants. J Integr Plant Biol. 2021;63:2020–30.
Cui W-W, Ye C, Wang K-X, Yang X, Zhu P-Y, Hu K, et al. Momordica. charantia-derived extracellular vesicles-like nanovesicles protect cardiomyocytes against radiation injury via attenuating DNA damage and mitochondria dysfunction. Front Cardiovasc Med. 2022;9:864188.
Rutter BD, Innes RW. Growing pains: addressing the pitfalls of plant extracellular vesicle research. New Phytol. 2020;228:1505–10.
Jia Y, Yu L, Ma T, Xu W, Qian H, Sun Y, et al. Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics. 2022;12:6548–75.
Grenhas M, Lopes R, Ferreira BV, Barahona F, João C, Carneiro EA. Size-Exclusion chromatography: A path to higher yield and reproducibility compared to sucrose cushion ultracentrifugation for extracellular vesicle isolation in multiple myeloma. Int J Mol Sci. 2024;25:8496.
Sidhom K, Obi PO, Saleem A. A review of Exosomal isolation methods: is size exclusion chromatography the best option?? Int J Mol Sci. 2020;21:6466.
Guo J, Wu C, Lin X, Zhou J, Zhang J, Zheng W, et al. Establishment of a simplified dichotomic size-exclusion chromatography for isolating extracellular vesicles toward clinical applications. J Extracell Vesicles. 2021;10:e12145.
Patel U, Susman D, Allan AL. Quality control and validation of extracellular vesicles isolated from cultured human breast cancer cells. BMC Res Notes. 2024;17:202.
Yu J, Huang D, Liu H, Cai H. Optimizing conditions of polyethylene glycol precipitation for exosomes isolation from MSCs culture media for regenerative treatment. Biotechnol J. 2024;19:e202400374.
Kalarikkal SP, Prasad D, Kasiappan R, Chaudhari SR, Sundaram GM. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci Rep. 2020;10:4456.
Zhang J, Zhou C, Tan M, Cao Y, Ren Y, Peng L. Optimization and characterization of PEG extraction process for Tartary Buckwheat-Derived nanoparticles. Foods. 2024;13:2624.
Ing TS. Isolated ultrafiltration: its origin and early development. Artif Organs. 2013;37:841–7.
You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater. 2021;6:4321–32.
Kırbaş OK, Sağraç D, Çiftçi ÖC, Özdemir G, Öztürkoğlu D, Bozkurt BT, et al. Unveiling the potential: extracellular vesicles from plant cell suspension cultures as a promising source. BioFactors. 2025;51:e2090.
Liangsupree T, Multia E, Riekkola M-L. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A. 2021;1636: 461773.
Al-Madhagi H. The landscape of exosomes biogenesis to clinical applications. Int J Nanomed. 2024;19:3657–75.
Liu N, Hou L, Chen X, Bao J, Chen F, Cai W, et al. Arabidopsis TETRASPANIN8 mediates exosome secretion and Glycosyl inositol phosphoceramide sorting and trafficking. Plant Cell. 2024;36:626–41.
He B, Cai Q, Qiao L, Huang C-Y, Wang S, Miao W, et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat Plants. 2021;7:342–52.
Wen Z, Yu J, Jeong H, Kim D-U, Yang JY, Hyun K-A, et al. An all-in-one platform to deplete pathogenic bacteria for rapid and safe enrichment of plant-derived extracellular vesicles. Lab Chip. 2023;23:4483–92.
Steć A, Chodkowska M, Kasprzyk-Pochopień J, Mielczarek P, Piekoszewski W, Lewczuk B, et al. Isolation of citrus lemon extracellular vesicles: development and process control using capillary electrophoresis. Food Chem. 2023;424:136333.
Schröder S, Zhang H, Yeung ES, Jänsch L, Zabel C, Wätzig H. Quantitative gel electrophoresis: sources of variation. J Proteome Res. 2008;7:1226–34.
Woith E, Melzig MF. Extracellular vesicles from fresh and dried Plants—Simultaneous purification and visualization using gel electrophoresis. Int J Mol Sci. 2019;20:357.
Yang M, Liu X, Luo Q, Xu L, Chen F. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnol. 2020;18: 100.
Rhim W-K, Kim JY, Lee SY, Cha S-G, Park JM, Park HJ, et al. Recent advances in extracellular vesicle engineering and its applications to regenerative medicine. Biomater Res. 2023;27:130.
Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The antioxidant effect of small extracellular vesicles derived from Aloe vera peels for wound healing. Tissue Eng Regen Med. 2021;18:561–71.
Kim WS, Ha J-H, Jeong S-H, Lee J-I, Lee B-W, Jeong YJ, et al. Immunological effects of aster Yomena Callus-Derived extracellular vesicles as potential therapeutic agents against allergic asthma. Cells. 2022;11:2805.
Sharma S, Mahanty M, Rahaman SG, Mukherjee P, Dutta B, Khan MI, et al. Avocado-derived extracellular vesicles loaded with Ginkgetin and Berberine prevent inflammation and macrophage foam cell formation. J Cell Mol Med. 2024;28: e18177.
Aziz MA, Seo B, Hussaini HM, Hibma M, Rich AM. Comparing two methods for the isolation of exosomes. J Nucleic Acids. 2022;2022:8648373.
Taşlı PN. Usage of celery root exosome as an immune suppressant; lipidomic characterization of apium graveolens originated exosomes and its suppressive effect on pma/ionomycin mediated CD4 + T lymphocyte activation. J Food Biochem. 2022;46:e14393.
Jackson KK, Mata C, Marcus RK. A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources. Talanta. 2023;252:123779.
Ramírez O, Pomareda F, Olivares B, Huang Y-L, Zavala G, Carrasco-Rojas J, et al. Aloe vera peel-derived nanovesicles display anti-inflammatory properties and prevent myofibroblast differentiation. Phytomedicine. 2024;122:155108.
De Palma M, Ambrosone A, Leone A, Del Gaudio P, Ruocco M, Turiák L, et al. Plant roots release small extracellular vesicles with antifungal activity. Plants. 2020;9:1777.
Buratta S, Latella R, Chiaradia E, Salzano AM, Tancini B, Pellegrino RM, et al. Characterization of nanovesicles isolated from olive vegetation water. Foods. 2024;13:835.
Suresh AP, Kalarikkal SP, Pullareddy B, Sundaram GM. Low pH-Based method to increase the yield of Plant-Derived nanoparticles from fresh ginger rhizomes. ACS Omega. 2021;6:17635–41.
López de las Hazas M-C, Tomé-Carneiro J, del Pozo-Acebo L, del Saz-Lara A, Chapado LA, Balaguer L, et al. Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous MiRNAs. Pharmacol Res. 2023;198:106999.
Ekanayake G, Piibor J, Midekessa G, Godakumara K, Dissanayake K, Andronowska A, et al. Systematic characterization of extracellular vesicles from potato (Solanum tuberosum cv. Laura) roots and peels: biophysical properties and proteomic profiling. Front Plant Sci. 2024;15:1477614.
Feng W, Teng Y, Zhong Q, Zhang Y, Zhang J, Zhao P, et al. Biomimetic Grapefruit-Derived extracellular vesicles for safe and targeted delivery of sodium thiosulfate against vascular calcification. ACS Nano. 2023;17:24773–89.
Valentino A, Conte R, Bousta D, Bekkari H, Di Salle A, Calarco A, et al. Extracellular vesicles derived from opuntia ficus-indica fruit (OFI-EVs) speed up the normal wound healing processes by modulating cellular responses. Int J Mol Sci. 2024;25:7103.
Yang R, Lin F, Wang W, Dai G, Ke X, Wu G. Investigating the therapeutic effects and mechanisms of Carthamus tinctorius L.-derived nanovesicles in atherosclerosis treatment. Cell Commun Signal. 2024. https://doi.org/10.1186/s12964-024-01561-6.
Morris EJ, Kaur H, Dobhal G, Malhotra S, Ayed Z, Carpenter AL, et al. The physical characterization of extracellular vesicles for function Elucidation and biomedical applications: A review. Part Part Syst Char. 2024;41:2400024.
Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, et al. Novel plant-derived exosome-like nanovesicles from catharanthus roseus: preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU.1 axis. J Nanobiotechnology. 2023;21(1): 160.
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, et al. Extracellular vesicles of Norway Spruce contain precursors and enzymes for lignin formation and Salicylic acid. Plant Physiol. 2024;196:788–809.
Liu B, Li X, Yu H, Shi X, Zhou Y, Alvarez S, et al. Therapeutic potential of Garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Theranostics. 2021;11:9311–30.
Sánchez-López CM, Manzaneque-López MC, Pérez-Bermúdez P, Soler C, Marcilla A. Characterization and bioactivity of extracellular vesicles isolated from pomegranate. Food Funct. 2022;13:12870–82.
Rabienezhad Ganji N, Urzì O, Tinnirello V, Costanzo E, Polito G, Palumbo Piccionello A, et al. Proof-of-concept study on the use of Tangerine-derived nanovesicles as SiRNA delivery vehicles toward colorectal cancer cell line SW480. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms25010546.
Pei J, Palanisamy CP, Jayaraman S, Natarajan PM, Umapathy VR, Roy JR, et al. Proteomics profiling of extracellular vesicle for identification of potential biomarkers in Alzheimer’s disease: a comprehensive review. Ageing Res Rev. 2024;99: 102359.
Zimmerman JA, Verboonen B, Harrison Hanson AP, Arballo LR, Brusslan JA. Arabidopsis Apoplast TET8 positively correlates to leaf senescence, and tet3tet8 double mutants are delayed in leaf senescence. Plant Direct. 2024;8:e70006.
Cai Q, Qiao L, Wang M, He B, Lin F-M, Palmquist J, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360:1126–9.
Eisenach C, Chen Z, Grefen C, Blatt MR. The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant J. 2012;69:241–51.
Neves J, Monteiro J, Sousa B, Soares C, Pereira S, Fidalgo F, et al. Relevance of the exocyst in Arabidopsis exo70e2 mutant for cellular homeostasis under stress. Int J Mol Sci. 2022;24:424.
Larson ER, Ortmannová J, Donald NA, Alvim J, Blatt MR, Žárský V. Synergy among exocyst and SNARE interactions identifies a functional hierarchy in secretion during vegetative growth. Plant Cell. 2020;32:2951–63.
Ortmannová J, Sekereš J, Kulich I, Šantrůček J, Dobrev P, Žárský V, et al. Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. J Exp Bot. 2022;73:742–55.
Feng J, Xiu Q, Huang Y, Troyer Z, Li B, Zheng L. Plant-Derived Vesicle‐Like nanoparticles as promising biotherapeutic tools: present and future. Adv Mater. 2023;35:2207826.
Wei Y, Cai X, Wu Q, Liao H, Liang S, Fu H, et al. Extraction, isolation, and component analysis of Turmeric-Derived Exosome-like nanoparticles. Bioengineering. 2023;10:1199.
Buratta S, Urbanelli L, Tognoloni A, Latella R, Cerrotti G, Emiliani C, et al. Protein and lipid content of milk extracellular vesicles: a comparative overview. Life (Basel). 2023;13:401.
Wang B, Zhuang X, Deng Z-B, Jiang H, Mu J, Wang Q, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–34.
Chen Z, Ho I-L, Soeung M, Yen E-Y, Liu J, Yan L, et al. Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis. Nat Commun. 2023;14:2194.
Lee H, Zhuang L, Gan B. Ether phospholipids govern ferroptosis. J Genet Genomics. 2021;48:517–9.
Chen X, Zhou Y, Yu J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol Pharm. 2019;16:2690–9.
Kumar A, Sundaram K, Teng Y, Mu J, Sriwastva MK, Zhang L, et al. Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance. Theranostics. 2022;12:1388–403.
Baldrich P, Rutter BD, Karimi HZ, Podicheti R, Meyers BC, Innes RW. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-Nucleotide tiny RNAs. Plant Cell. 2019;31:315–24.
Xu X-H, Yuan T-J, Dad HA, Shi M-Y, Huang Y-Y, Jiang Z-H, et al. Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 2021;21:8151–9.
Shen H, Zhang M, Liu D, Liang X, Chang Y, Hu X, et al. Solanum lycopersicum derived exosome-like nanovesicles alleviate restenosis after vascular injury through the Keap1/Nrf2 pathway. Food Funct. 2025;16:539–53. https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo03993a
Wang X, Wu B, Sun G, He W, Gao J, Huang T, et al. Selenium biofortification enhanced miR167a expression in broccoli extracellular vesicles inducing apoptosis in human pancreatic cancer cells by targeting IRS1. Int J Nanomed. 2023;18:2431–46.
Wu B, Pan W, Luo S, Luo X, Zhao Y, Xiu Q, et al. Turmeric‐Derived Nanoparticles Functionalized Aerogel Regulates Multicellular Networks to Promote Diabetic Wound Healing. Adv Sci (Weinh). 2024;11:e2307630.https://pmc.ncbi.nlm.nih.gov/articles/PMC11095230/
Emmanuela N, Muhammad DR, Iriawati, Wijaya CH, Ratnadewi YMD, Takemori H, et al. Isolation of plant-derived exosome-like nanoparticles (PDENs) from solanum nigrum L. berries and their effect on interleukin-6 expression as a potential anti-inflammatory agent. PLoS ONE. 2024;19:e0296259.
Kim J, Gao C, Guo P, Sheng J, Wang J. A novel approach to alleviate acetaminophen-induced hepatotoxicity with hybrid balloon flower root-derived exosome-like nanoparticles (BDEs) with Silymarin via Inhibition of hepatocyte MAPK pathway and apoptosis. Cell Commun Signal. 2024;22:334.
Kocholatá M, Malý J, Kříženecká S, Janoušková O. Diversity of extracellular vesicles derived from calli, cell culture and apoplastic fluid of tobacco. Sci Rep. 2024;14:30111.
Peng X, Cheng L, You Y, Tang C, Ren B, Li Y, et al. Oral microbiota in human systematic diseases. Int J Oral Sci. 2022;14:14.
Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000. 2015;69:7–17.
Lee B-H, Wu S-C, Chien H-Y, Shen T-L, Hsu W-H. Tomato-fruit-derived extracellular vesicles inhibit Fusobacterium nucleatum via lipid-mediated mechanism. Food Funct. 2023;14:8942–50.
Tan S, Liu Z, Cong M, Zhong X, Mao Y, Fan M, et al. Dandelion-derived vesicles-laden hydrogel dressings capable of neutralizing Staphylococcus aureus exotoxins for the care of invasive wounds. J Controlled Release. 2024;368:355–71.
Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-Derived Exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe. 2018;24:637–e6528.
Liu Y, Tan M-L, Zhu W-J, Cao Y-N, Peng L-X, Yan Z-Y, et al. In vitro effects of Tartary Buckwheat-Derived nanovesicles on gut microbiota. J Agric Food Chem. 2022;70:2616–29.
Zhu M, Xu H, Liang Y, Xu J, Yue N, Zhang Y, et al. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis via facilitating double-positive CD4 + CD8 + T cells expansion. J Nanobiotechnology. 2023;21: 309.
Sriwastva MK, Deng Z, Wang B, Teng Y, Kumar A, Sundaram K, et al. Exosome-like nanoparticles from mulberry bark prevent DSS‐induced colitis via the AhR/COPS8 pathway. EMBO Rep. 2022;23:e53365.
Zhu Z, Liao L, Gao M, Liu Q. Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-κB pathway and gut microbiota modulation. Food Funct. 2023;14:7520–34.
Kim J, Zhang S, Zhu Y, Wang R, Wang J. Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines. J Ginseng Res. 2023;47:627–37.
Zhao X, Yin F, Fu L, Ma Y, Ye L, Huang Y, et al. Garlic-derived exosome-like nanovesicles as a hepatoprotective agent alleviating acute liver failure by inhibiting CCR2/CCR5 signaling and inflammation. Biomater Adv. 2023;154:213592.
Vanessa V, Rachmawati H, Barlian A. Anti-inflammatory potential of goldenberry-derived exosome-like nanoparticles in macrophage polarization. Future Sci OA. 2024;10:FSO943.
Yan L, Cao Y, Hou L, Luo T, Li M, Gao S, et al. Ginger exosome-like nanoparticle-derived MiRNA therapeutics: A strategic inhibitor of intestinal inflammation. J Adv Res. 2024;S2090–1232(24):00130–9.
Qiu F-S, Wang J-F, Guo M-Y, Li X-J, Shi C-Y, Wu F, et al. Rgl-exomiR-7972, a novel plant Exosomal MicroRNA derived from fresh rehmanniae radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother. 2023;165:115007.
Wu J, Ma X, Lu Y, Zhang T, Du Z, Xu J, et al. Edible pueraria lobata-Derived exosomes promote M2 macrophage polarization. Molecules. 2022;27:8184.
Gao C, Zhou Y, Chen Z, Li H, Xiao Y, Hao W, et al. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics. 2022;12:5596–614.
Han R, Zhou D, Ji N, Yin Z, Wang J, Zhang Q, et al. Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway. J Nanobiotechnol. 2025;23:41.
Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-Derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-Activated protein kinase. Mol Ther. 2017;25:1641–54.
Xu J, Yu Y, Zhang Y, Dai H, Yang Q, Wang B, et al. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells. Nat Nanotechnol. 2024;19:1569–78.
Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.
Yin L, Yan L, Yu Q, Wang J, Liu C, Wang L, et al. Characterization of the MicroRNA profile of ginger Exosome-like nanoparticles and their Anti-Inflammatory effects in intestinal Caco-2 cells. J Agric Food Chem. 2022;70:4725–34.
Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived Exosomal MicroRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29:2424–40.
Liu J, Li W, Bian Y, Jiang X, Zhu F, Yin F, et al. Garlic-derived exosomes regulate PFKFB3 expression to relieve liver dysfunction in high-fat diet-fed mice via macrophage-hepatocyte crosstalk. Phytomedicine. 2023;112:154679.
Trentini M, Zanotti F, Tiengo E, Camponogara F, Degasperi M, Licastro D, et al. An Apple a day keeps the Doctor away: potential role of MiRNA 146 on macrophages treated with exosomes derived from apples. Biomedicines. 2022;10:415.
Trentini M, Zanolla I, Zanotti F, Tiengo E, Licastro D, Dal Monego S, et al. Apple derived exosomes improve collagen type I production and decrease MMPs during aging of the skin through downregulation of the NF-κB. Pathw as Mode Action Cells. 2022;11:3950.
Tinnirello V, Zizzo MG, Conigliaro A, Tabone M, Ganji NR, Cicio A, et al. Industrial-produced lemon nanovesicles ameliorate experimental colitis-associated damages in rats via the activation of anti-inflammatory and antioxidant responses and microbiota modification. Biomed Pharmacother. 2024;174:116514.
Raimondo S, Urzì O, Meraviglia S, Di Simone M, Corsale AM, Rabienezhad Ganji N, et al. Anti-inflammatory properties of lemon-derived extracellular vesicles are achieved through the Inhibition of ERK/NF-κB signalling pathways. J Cell Mol Med. 2022;26:4195–209.
Liu B, Lu Y, Chen X, Muthuraj PG, Li X, Pattabiraman M, et al. Protective role of Shiitake Mushroom-Derived Exosome-Like nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced acute liver injury in mice. Nutrients. 2020;12:477.
Ma L, Ye Z, Guo D, Nie C, Zhou Z. Citri reticulate pericranium-derived extracellular vesicles exert antioxidant and anti-inflammatory properties and enhance the bioactivity of nobiletin by forming EVs-nob nanoparticles. Front Cell Dev Biol. 2024;12:1509123.
Liu C, Yan X, Zhang Y, Yang M, Ma Y, Zhang Y, et al. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J Nanobiotechnol. 2022;20:206.
Zhang X, Pan Z, Wang Y, Liu P, Hu K. Taraxacum officinale-derived exosome-like nanovesicles modulate gut metabolites to prevent intermittent hypoxia-induced hypertension. Biomed Pharmacother. 2023;161:114572.
Eom J-Y, Choi S-H, Kim H-J, Kim D, Bae J-H, Kwon G-S, et al. Hemp-Derived nanovesicles protect leaky gut and liver injury in dextran sodium Sulfate-Induced colitis. Int J Mol Sci. 2022;23:9955.
Martínez Fajardo C, Morote L, Moreno-Giménez E, López-López S, Rubio-Moraga Á, Díaz-Guerra MJM, et al. Exosome-like nanoparticles from Arbutus Unedo L. mitigate LPS-induced inflammation via JAK-STAT inactivation. Food Funct. 2024;15:11280–90.
Zeng Y, Yu S, Lu L, Zhang J, Xu C. Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway. Nanomed. 2024;19:2357–73.
Zhuang X, Deng Z, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles. 2015. https://doi.org/10.3402/jev.v4.28713.
Zhao W, Bian Y, Wang Q, Yin F, Yin L, Zhang Y, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin. 2022;43:645–58.
Zhang Y, Lu L, Li Y, Liu H, Zhou W, Zhang L. Response surface methodology optimization of Exosome-like nanovesicles extraction from lycium ruthenicum Murray and their inhibitory effects on Aβ-Induced apoptosis and oxidative stress in HT22 cells. Foods. 2024;13:3328.
Kim DK, Rhee WJ. Antioxidative effects of carrot-derived nanovesicles in cardiomyoblast and neuroblastoma cells. Pharmaceutics. 2021;13:1203.
Wang F, Yuan M, Shao C, Ji N, Zhang H, Li C. Momordica charantia-derived extracellular vesicles provide antioxidant protection in ulcerative colitis. Molecules. 2023;28:6182.
Wang J, Xie F, He Q, Gu R, Zhang S, Su X, et al. Hybrid nanovesicles derived from grapes and tomatoes with synergistic antioxidative activity. Biomater Sci. 2024;12:5631–43.
Wang D, Zhang H, Liao X, Li J, Zeng J, Wang Y, et al. Oral administration of Robinia Pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF-1α- and HIF-2α-mediated lipid peroxidation. J Nanobiotechnol. 2024;22:479.
Kim J-S, Eom J-Y, Kim H-W, Ko J-W, Hong E-J, Kim M-N, et al. Hemp sprout-derived exosome-like nanovesicles as hepatoprotective agents attenuate liver fibrosis. Biomater Sci. 2024;12:5361–71.
Kim J-S, Kim D, Gil M-C, Kwon H-J, Seo W, Kim D-K, et al. Pomegranate-Derived Exosome-Like nanovesicles alleviate binge Alcohol-Induced leaky gut and liver injury. J Med Food. 2023;26:739–48.
Choi W, Cho JH, Park SH, Kim DS, Lee HP, Kim D, et al. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J Ginseng Res. 2024;48:211–9.
Baldini N, Torreggiani E, Roncuzzi L, Perut F, Zini N, Avnet S. Exosome-like nanovesicles isolated from citrus Limon L. Exert antioxidative effect. CPB. 2018;19:877–85.
Lei X, Li H, Chen S, Li B, Xia H, Li J, et al. Tea leaf exosome-like nanoparticles (TELNs) improve oleic acid-induced lipid metabolism by regulating MiRNAs in HepG-2 cells. Bioresour Bioprocess. 2025;12:9.
Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, et al. Strawberry-Derived Exosome-Like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021;11:87.
De Robertis M, Sarra A, D’Oria V, Mura F, Bordi F, Postorino P, et al. Blueberry-Derived Exosome-Like nanoparticles counter the response to TNF-α-Induced change on gene expression in EA.hy926 cells. Biomolecules. 2020;10:742.
Naselli F, Volpes S, Cardinale PS, Palumbo FS, Cancilla F, Lopresti F, et al. New nanovesicles from prickly Pear fruit juice: A resource with antioxidant, Anti-Inflammatory, and nutrigenomic properties. Cells. 2024;13:1756.
Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape Exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-Induced colitis. Mol Ther. 2013;21:1345–57.
Kim M, Park JH. Isolation of Aloe saponaria-Derived extracellular vesicles and investigation of their potential for chronic wound healing. Pharmaceutics. 2022;14:1905.
Kim H, Shin H, Park M, Ahn K, Kim S-J, An S-H. Exosome-Like vesicles from Lithospermum erythrorhizon callus enhanced wound healing by reducing LPS-Induced inflammation. J Microbiol Biotechnol. 2024;35:e2410022.
Savcı Y, Kırbaş OK, Bozkurt BT, Abdik EA, Taşlı PN, Şahin F, et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 2021;12:5144–56.
Şahin F, Koçak P, Güneş MY, Özkan İ, Yıldırım E, Kala EY. In vitro wound healing activity of wheat-derived nanovesicles. Appl Biochem Biotechnol. 2019;188:381–94.
Seo K, Yoo JH, Kim J, Min SJ, Heo DN, Kwon IK, et al. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation. Nanoscale. 2023;15:5798–808.
Park Y-S, Kim H-W, Hwang J-H, Eom J-Y, Kim D-H, Park J, et al. Plum-Derived Exosome-like nanovesicles induce differentiation of osteoblasts and reduction of osteoclast activation. Nutrients. 2023;15:2107.
Hwang J-H, Park Y-S, Kim H-S, Kim D, Lee S-H, Lee C-H, et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice. J Controlled Release. 2023;355:184–98.
Sim Y, Seo H-J, Kim D, Lee S-H, Kwon J, Kwun I-S, et al. The effect of Apple-Derived nanovesicles on the osteoblastogenesis of osteoblastic MC3T3-E1 cells. J Med Food. 2023;26:49–58.
Zhan W, Deng M, Huang X, Xie D, Gao X, Chen J, et al. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J Controlled Release. 2023;364:644–53.
Zhao Q, Feng J, Liu F, Liang Q, Xie M, Dong J, et al. Rhizoma Drynariae-derived nanovesicles reverse osteoporosis by potentiating osteogenic differentiation of human bone marrow mesenchymal stem cells via targeting era signaling. Acta Pharm Sinica B. 2024;14:2210–27.
Di Stefano M, Polizzi A, Santonocito S, Romano A, Lombardi T, Isola G. Impact of oral Microbiome in periodontal health and periodontitis: A critical review on prevention and treatment. Int J Mol Sci. 2022;23:5142.
Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27:409–19.
Gasmi A, Gasmi Benahmed A, Noor S, Mujawdiya P. Porphyromonas gingivalis in the development of periodontitis: impact on dysbiosis and inflammation. Arch Razi Inst. 2022;77:1539–51.
Signat B, Roques C, Poulet P, Duffaut D. Fusobacterium nucleatumin periodontal health and disease. Curr Issues Mol Biol. 2011;13:25–36.
Liu H, Liu Y, Fan W, Fan B. Fusobacterium nucleatum triggers Proinflammatory cell death via Z-DNA binding protein 1 in apical periodontitis. Cell Commun Signal. 2022;20:196.
Veras EL, Castro dos Santos N, Souza JGS, Figueiredo LC, Retamal-Valdes B, Barão VAR, et al. Newly identified pathogens in periodontitis: evidence from an association and an elimination study. J Oral Microbiol. 2023;15:2213111.
Kim S, Lee JY, Park J-Y, Kim Y, Kang C-H. Lacticaseibacillus rhamnosus MG4706 suppresses periodontitis in osteoclasts, Inflammation-Inducing cells, and Ligature-Induced rats. Nutrients. 2022;14:4869.
Zhou K, Xie J, Su Y, Fang J. Lactobacillus reuteri for chronic periodontitis: focus on underlying mechanisms and future perspectives. Biotechnol Genet Eng Rev. 2023;40:1–28.
Naureen Z, Medori MC, DHULI K, Donato K, Connelly ST, Bellinato F, et al. Polyphenols and Lactobacillus reuteri in oral health. J Prev Med Hyg. 2022;63:E246–54.
Han N, Liu Y, Du J, Xu J, Guo L, Liu Y. Regulation of the host immune microenvironment in periodontitis and periodontal bone remodeling. Int J Mol Sci. 2023;24: 3158.
Wang W, Zheng C, Yang J, Li B. Intersection between macrophages and periodontal pathogens in periodontitis. J Leukoc Biol. 2021;110:577–83.
Jiang J, Wang F, Huang W, Sun J, Ye Y, Ou J, et al. Mobile mechanical signal generator for macrophage polarization. Exploration. 2023;3:20220147.
Yang L, Tao W, Xie C, Chen Q, Zhao Y, Zhang L, et al. Interleukin-37 ameliorates periodontitis development by inhibiting NLRP3 inflammasome activation and modulating M1/M2 macrophage polarization. J Periodontal Res. 2023;59:128–39.
Liu Q, Zhang J, Liu X, Gao J. Role of growth hormone in maturation and activation of dendritic cells via miR‐200a and the Keap1/Nrf2 pathway. Cell Prolif. 2015;48:573–81.
El-Awady AR, Elashiry M, Morandini AC, Meghil MM, Cutler CW. Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontol. 2000. 2022;89:41–50.
Meghil MM, Ghaly M, Cutler CW. A Tale of two fimbriae: how invasion of dendritic cells by Porphyromonas gingivalis disrupts DC maturation and depolarizes the T-Cell-Mediated immune response. Pathogens. 2022;11:328.
Wu L, Luo Z, Chen Y, Yan Z, Fu J, Jiang Y, et al. Butyrate inhibits dendritic cell activation and alleviates periodontitis. J Dent Res. 2023;102:1326–36.
Figueredo CM, Lira-Junior R, Love RM. T and B cells in periodontal disease: new functions in A complex scenario. Int J Mol Sci. 2019;20:3949.
Zhu H, He W. Ginger: a representative material of herb-derived exosome-like nanoparticles. Front Nutr. 2023;10:1223349.
Sczepanik FSC, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, et al. Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontol 2000. 2020;84:45–68.
Pouliou C, Piperi C. Advances of oxidative stress impact in periodontitis: biomarkers and effective targeting options. Curr Med Chem. 2024;31:6187–203.
Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells. 2022;11:552.
Wang Y, Andrukhov O, Rausch-Fan X. Oxidative stress and antioxidant system in periodontitis. Front Physiol. 2017;8:910.
Ying S, Tan M, Feng G, Kuang Y, Chen D, Li J, et al. Low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress. Theranostics. 2020;10:9789–807.
Zhu Y, Zhao J, Ding H, Qiu M, Xue L, Ge D, et al. Applications of plant-derived extracellular vesicles in medicine. MedComm. 2024. https://doi.org/10.1002/mco2.741.
He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21:4777.
Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: from anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases. Biochimie. 2020;171–172:103–9.
Xu T, Xie K, Wang C, Ivanovski S, Zhou Y. Immunomodulatory nanotherapeutic approaches for periodontal tissue regeneration. Nanoscale. 2023;15:5992–6008.
de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration. J Periodontal Res. 2017;52:965–74.
Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015;2015:1–10.
Artese L, Piattelli A, de Gouveia Cardoso LA, Ferrari DS, Onuma T, Piccirilli M, et al. Immunoexpression of angiogenesis, nitric oxide synthase, and proliferation markers in gingival samples of patients with aggressive and chronic periodontitis. J Periodontol. 2010;81:718–26.
Mohd Nor NH, Berahim Z, Azlina A, Mokhtar KI, Kannan TP. Identification and characterization of intraoral and dermal fibroblasts revisited. Curr Stem Cell Res Ther. 2017;12:675–81.
Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000. 2015;69:46–67.
Herrera D, Sanz M, Shapira L, Brotons C, Chapple I, Frese T, et al. Periodontal diseases and cardiovascular diseases, diabetes, and respiratory diseases: summary of the consensus report by the European federation of periodontology and WONCA Europe. Eur J Gen Pract. 2024;30:2320120.
Yamazaki K, Kamada N. Exploring the oral-gut linkage: interrelationship between oral and systemic diseases. Mucosal Immunol. 2024;17:147–53.
Horliana ACRT, Chambrone L, Foz AM, Artese HPC, Rabelo M, de Pannuti S. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: A systematic review. PLoS ONE. 2014;9:e98271.
Carrizales-Sepúlveda EF, Ordaz-Farías A, Vera-Pineda R, Flores-Ramírez R. Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart Lung Circ. 2018;27:1327–34.
Wu P, Wu W, Zhang S, Han J, Liu C, Yu H, et al. Therapeutic potential and pharmacological significance of extracellular vesicles derived from traditional medicinal plants. Front Pharmacol. 2023;14:1272241.https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1272241/full
Mu N, Li J, Zeng L, You J, Li R, Qin A, et al. Plant-Derived Exosome-Like nanovesicles: current progress and prospects. Int J Nanomed. 2023;18:4987–5009.
Sundaram K, Teng Y, Mu J, Xu Q, Xu F, Sriwastva MK, et al. Outer membrane vesicles released from Garlic Exosome-like nanoparticles (GaELNs) train gut bacteria that reverses type 2 diabetes via the gut‐Brain axis. Small. 2024;20:e2308680.
Zou J, Song Q, Shaw PC, Wu Y, Zuo Z, Yu R. Tangerine Peel-Derived Exosome-Like nanovesicles alleviate hepatic steatosis induced by type 2 diabetes: evidenced by regulating lipid metabolism and intestinal microflora. Int J Nanomed. 2024;19:10023–43.
Miya MB, Ashutosh, Maulishree, Chandra Gupta P, Pathak V, Mishra R, et al. Therapeutic effects of OXY- exo in diabetic wound injury. Biochem Biophys Res Commun. 2024;731:150398.
He C, Wang K, Xia J, Qian D, Guo J, Zhong L, et al. Natural exosomes-like nanoparticles in mung bean sprouts possesses anti-diabetic effects via activation of PI3K/Akt/GLUT4/GSK-3β signaling pathway. J Nanobiotechnol. 2023;21:349.
Tan M, Liu Y, Xu Y, Yan G, Zhou N, Chen H, et al. Plant-Derived exosomes as novel nanotherapeutics contrive Glycolysis Reprogramming-Mediated angiogenesis for diabetic ulcer healing. Biomater Res. 2024;28:0035.
Bajaj G, Choudhary D, Singh V, Priyadarshi N, Garg P, Mantri SS, et al. MicroRNAs Dependent G‐ELNs Based Intervention Improves Glucose and Fatty Acid Metabolism While Protecting Pancreatic β‐Cells in Type 2 Diabetic Mice. Small. 2025;21:e2409501.
Garcia-Ibañez P, Roses C, Agudelo A, Milagro FI, Barceló AM, Viadel B, et al. The influence of red cabbage extract nanoencapsulated with brassica plasma membrane vesicles on the gut Microbiome of obese volunteers. Foods. 2021;10:1038.
Lee JH, Kang SJ, Rhee WJ. Exploiting Spinach-Derived extracellular vesicles for Anti-Obesity therapy through lipid accumulation Inhibition. Adv Ther. 2024;n/a:2400150.
Pang W, Zuo Z, Sun W, Zhang Z, Wang J, Wang Y, et al. Kidney bean derived exosome-like nanovesicles ameliorate high-fat diet-induced obesity via reshaping gut microbiota. J Funct Foods. 2024;113:105997.
Bian Y, Li W, Jiang X, Yin F, Yin L, Zhang Y, et al. Garlic-derived exosomes carrying miR-396e shapes macrophage metabolic reprograming to mitigate the inflammatory response in obese adipose tissue. J Nutr Biochem. 2023;113:109249.
Dolma L, Damodaran A, Panonnummal R, Nair SC. Exosomes isolated from citrus lemon: a promising candidate for the treatment of alzheimer’s disease. Ther Delivery. 2024;15:507–19.
Timms K, Holder B, Day A, Mclaughlin J, Forbes KA, Westwood M. Watermelon-Derived extracellular vesicles influence human ex vivo placental cell behavior by altering intestinal secretions. Mol Nutr Food Res. 2022;66:e2200013.
Shinjo T, Nishimura F. The bidirectional association between diabetes and periodontitis, from basic to clinical. Jpn Dent Sci Rev. 2024;60:15–21.
Mirnic J, Djuric M, Brkic S, Gusic I, Stojilkovic M, Tadic A, et al. Pathogenic mechanisms that May link periodontal disease and type 2 diabetes Mellitus—The role of oxidative stress. Int J Mol Sci. 2024;25:9806.
Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16:545–55.
Gordon H, Salim N, Tong S, Walker S, De Silva M, Cluver C, et al. Metformin use and preeclampsia risk in women with diabetes: a two-country cohort analysis. BMC Med. 2024;22:418.
Nabrdalik K, Hendel M, Irlik K, Kwiendacz H, Łoniewski I, Bucci T, et al. Gastrointestinal adverse events of metformin treatment in patients with type 2 diabetes mellitus: a systematic review and meta-analysis with meta-regression of observational studies. BMC Endocr Disord. 2024;24:206.https://bmcendocrdisord.biomedcentral.com/articles/10.1186/s12902-024-01727-w
Jin E, Yang Y, Cong S, Chen D, Chen R, Zhang J, et al. Lemon-derived nanoparticle-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J Nanobiotechnol. 2025;23:68.
Guo X, Li X, Liao C, Feng X, He T. Periodontal disease and subsequent risk of cardiovascular outcome and all-cause mortality: A meta-analysis of prospective studies. PLoS ONE. 2023;18:e0290545.
Wang W, Yang Z, Wang Y, Gao H, Wang Y, Zhang Q. Association between periodontitis and carotid artery calcification: A systematic review and Meta-Analysis. Biomed Res Int. 2021;2021:1–9.
Shang J, Liu H, Zheng Y, Zhang Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front Physiol. 2023;14:1210449.https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1210449/full
Joshi C, Bapat R, Anderson W, Dawson D, Hijazi K, Cherukara G. Detection of periodontal microorganisms in coronary atheromatous plaque specimens of myocardial infarction patients: a systematic review and meta-analysis. Trends Cardiovasc Med. 2021;31:69–82.
Libby P. Inflammation in atherosclerosis. Arterioscler, thromb. Vasc Biol. 2012;32:2045–51.
Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.
Chen S, Li Q, Shi H, Li F, Duan Y, Guo Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother. 2024;178:117084.
Wu Y, Xing L, Lu L, Liu S, Zhao D, Lin L, et al. Alterations in the salivary Microbiome and metabolism in patients with carotid atherosclerosis from rural Northeast China. J Am Heart Assoc. 2024;13:e034014.
Reytor-González C, Parise-Vasco JM, González N, Simancas-Racines A, Zambrano-Villacres R, Zambrano AK, et al. Obesity and periodontitis: a comprehensive review of their interconnected pathophysiology and clinical implications. Front Nutr. 2024;11:1440216.
Zhao P, Xu A, Leung WK. Obesity, bone loss, and periodontitis: the interlink. Biomolecules. 2022;12:865.
Suvan JE, Petrie A, Nibali L, Darbar U, Rakmanee T, Donos N, et al. Association between overweight/obesity and increased risk of periodontitis. J Clin Periodontol. 2015;42:733–9.
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discovery. 2022;21:201–23.
Chae Y-R, Lee H-B, Lee YR, Yoo G, Lee E, Park M, et al. Ameliorating effects of orostachys Japonica against high-fat diet-induced obesity and gut dysbiosis. J Ethnopharmacol. 2024;333:118443.
Dong S, Wu S, Li L, Hao F, Wu J, Liao Z, et al. Alleviation of lipid metabolic dysfunction through regulation of intestinal bacteriophages and bacteria by green tea polyphenols in ob/ob mice. Food Chem. 2024;456:139988.
Wang J, Zhuang P, Lin B, Li H, Zheng J, Tang W, et al. Gut microbiota profiling in obese children from southeastern China. BMC Pediatr. 2024;24:193.
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: comparative pathology of animal models for COVID-19. Virulence. 2024;15:2316438.
Molina A, Huck O, Herrera D, Montero E. The association between respiratory diseases and periodontitis: a systematic review and meta-analysis. J Clin Periodontol. 2023;50:842–87.
Kalarikkal SP, Sundaram GM. Edible plant-derived Exosomal micrornas: exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2. Toxicol Appl Pharmacol. 2021;414:115425.
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology‐facilitated vaccine development during the coronavirus disease 2019 (COVID‐19) pandemic. Exploration. 2022;2:20210082.https://onlinelibrary.wiley.com/doi/10.1002/EXP.20210082
Gai C, Pomatto MAC, Deregibus MC, Dieci M, Piga A, Camussi G. Edible plant-derived extracellular vesicles for oral mRNA vaccine delivery. Nato Adv Sci Inst Se. 2024;12:200.
Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, Grange C, et al. Plant-Derived extracellular vesicles as a delivery platform for RNA-Based vaccine: feasibility study of an oral and intranasal SARS-CoV-2 vaccine. Pharmaceutics. 2023;15:974.
Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, De Rosa FG, et al. Oral delivery of mRNA vaccine by Plant-Derived extracellular vesicle carriers. Cells. 2023;12:1826.
Raimondo S, Giavaresi G, Lorico A, Alessandro R. Extracellular vesicles as biological shuttles for targeted therapies. Int J Mol Sci. 2019;20:1848.
Barbarisi A, Visconti V, Lauritano D, Cremonini F, Caccianiga G, Ceraulo S. Correlation between periodontitis and onset of Alzheimer’s disease: a literature review. Dentistry J. 2024;12:331.
Soiniemi L, Solje E, Suominen AL, Kanninen KM, Kullaa AM. The association between oral diseases and neurodegenerative disorders. Journal of Alzheimer’s Disease. 2024;102:577–86.
Pawar S, Rauf MA, Abdelhady H, Iyer AK. Tau‐targeting nanoparticles for treatment of Alzheimer’s disease. Exploration. 2025;5:20230137.
Malaguarnera M, Cabrera-Pastor A. Emerging role of extracellular vesicles as biomarkers in neurodegenerative diseases and their clinical and therapeutic potential in central nervous system pathologies. Int J Mol Sci. 2024;25:10068.
Wu J, Wu J, Tang B, Zhang Z, Wei F, Yu D, et al. Effects of different periodontal interventions on the risk of adverse pregnancy outcomes in pregnant women: a systematic review and network meta-analysis of randomized controlled trials. Front Public Health. 2024;12:1373691.
Vivares-Builes AM, Rangel-Rincón LJ, Botero JE, Agudelo-Suárez AA. Gaps in knowledge about the association between maternal periodontitis and adverse obstetric outcomes: an umbrella review. J Evid Based Dent Pract. 2018;18:1–27.
Bruić M, Pirković A, Borozan S, Nacka Aleksić M, Jovanović Krivokuća M, Spremo-Potparević B. Antioxidative and anti-inflammatory effects of taxifolin in H2O2-induced oxidative stress in HTR-8/SVneo trophoblast cell line. Reprod Toxicol. 2024;126:108585.
Li M, Wu X, An P, Dang H, Liu Y, Liu R. Effects of Resveratrol on autophagy and the expression of inflammasomes in a placental trophoblast oxidative stress model. Life Sci. 2020;256:117890.
Holder B, Jones T, Sancho Shimizu V, Rice TF, Donaldson B, Bouqueau M, et al. Macrophage exosomes induce placental inflammatory cytokines: A novel mode of Maternal–Placental messaging. Traffic. 2016;17:168–78.
Kitamoto S, Kamada N. Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms. Periodontol 2000. 2022;89:142–53.
Yamazaki K. Oral-gut axis as a novel biological mechanism linking periodontal disease and systemic diseases: A review. Japanese Dent Sci Rev. 2023;59:273–80.
Jia X, Yang R, Li J, Zhao L, Zhou X, Xu X. Gut-bone axis: a non-negligible contributor to periodontitis. Front Cell Infect Microbiol. 2021;11:752708.
Han N, Li X, Du J, Xu J, Guo L, Liu Y. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res. 2023;58:1139–47.
Wang X, Liu Y, Dong X, Duan T, Wang C, Wang L, et al. peu-MIR2916-p3-enriched Garlic exosomes ameliorate murine colitis by reshaping gut microbiota, especially by boosting the anti-colitic bacteroides Thetaiotaomicron. Pharmacol Res. 2024;200:107071.
Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park I, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Controlled Release. 2023;353:1127–49.
Kumar MN, Kalarikkal SP, Jayaram Y, Narayanan J, Sundaram GM. Protocol to produce plant-based hybrid nanovesicles from fresh turmeric and pepper using polyethylene glycol. STAR Protoc. 2024;5:102924.
Lu X, Xu Z, Shu F, Wang Y, Han Y, Yang X, et al. Reactive oxygen species responsive multifunctional fusion extracellular nanovesicles: prospective treatments for acute heart transplant rejection. Adv Mater. 2024;36:2406758.
Song J, Jung H, You G, Mok H. Cancer-Cell‐Derived hybrid vesicles from MCF‐7 and HeLa cells for Dual‐Homotypic targeting of anticancer drugs. Macromol Biosci. 2021;21:2100067.
Leng Y, Yang L, Zhu H, Li D, Pan S, Yuan F. Stability of blueberry extracellular vesicles and their gene regulation effects in intestinal Caco-2 cells. Biomolecules. 2023;13:1412.
Nemidkanam V, Chaichanawongsaroj N. Characterizing Kaempferia parviflora extracellular vesicles, a nanomedicine candidate. PLoS ONE. 2022;17:e0262884.
Zhao Z, Lacombe J, Simon L, Sanchez-Ballester NM, Khanishayan A, Shaik N, et al. Physical, biochemical, and biological characterization of olive-derived lipid nanovesicles for drug delivery applications. J Nanobiotechnol. 2024;22:720.
Jang J, Jeong H, Jang E, Kim E, Yoon Y, Jang S, et al. Isolation of high-purity and high-stability exosomes from ginseng. Front Plant Sci. 2022;13:1064412. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1064412/full
Kim K, Park J, Sohn Y, Oh C-E, Park J-H, Yuk J-M, et al. Stability of plant Leaf-Derived extracellular vesicles according to preservative and storage temperature. Pharmaceutics. 2022;14:457.
Kawai-Harada Y, El Itawi H, Komuro H, Harada M. Evaluation of EV storage buffer for efficient preservation of engineered extracellular vesicles. Int J Mol Sci. 2023;24:12841.
