Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Santa Claus doesn’t exist (according to AI) • Graham Cluley

    December 28, 2025

    ios – Background Assets Framework server connection problem

    December 27, 2025

    FaZe Clan’s future is uncertain after influencers depart

    December 27, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Turning Ocean Waves into Energy with Atomically Thin Chromiteen
    Nanotechnology

    Turning Ocean Waves into Energy with Atomically Thin Chromiteen

    big tee tech hubBy big tee tech hubNovember 25, 2025043 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Turning Ocean Waves into Energy with Atomically Thin Chromiteen
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


    Harnessing nanoscale defects in atomically thin chromiteen, researchers have built a bendable device that produces volts from ocean waves.

    A vector of a wave in light blue against a dark blue background.

    Study: Strain-induced wave energy harvesting using atomically thin chromiteen. Image Credit: Vallabh Soni/Shutterstock.com

    Researchers have shown how atomically thin chromiteen, derived from naturally defect-rich chromite ore, can convert the gentle motion of ocean waves into electrical energy through strain-induced surface charge modulation.

    Their findings, published in Nanoscale, reveal a flexible, corrosion-resistant nanogenerator designed for marine environments.

    2D materials have long attracted attention for energy harvesting because of their exceptional electronic and mechanical properties. Chromiteen, a layered form of FeCr2O4, stands out for its chemical stability, high surface charge density, and ability to host naturally occurring defects that influence electron behavior.

    When such materials undergo mechanical strain, they experience charge redistribution at the atomic scale, a mechanism that can generate useful electricity through flexoelectricity.

    How Chromiteen was Formed

    The researchers exfoliated chromite ore using liquid-phase exfoliation, producing few-layer sheets verified via SEM, AFM, XRD, FTIR, and zeta potential measurements.

    These nanosheets were then encapsulated in thermoplastic polyurethane (TPU), creating a flexible composite in which the strain applied to the polymer is transferred directly to the embedded chromiteen.

    This film formed the core of a nanogenerator designed to mimic the motion of water waves. Mechanical bending produced controlled strain levels up to 4.2 %, allowing the team to track how deformation affected charge generation.

    Get all the details: Grab your PDF here!

    Investigating How Surface Defects Produce Energy

    Raman spectroscopy revealed distinct peak shifts and splitting under strain, confirming lattice symmetry breaking, which is a key flexoelectric signature.

    Zeta potential measurements indicated a negatively charged surface, while microscopy confirmed the presence of vacancies and structural irregularities introduced during exfoliation.

    When tested in a wave simulator, the chromiteen-TPU device produced an open-circuit voltage of around 5 V under high-turbulence conditions.

    Output increased consistently with both strain and wave intensity, reflecting the direct relationship between mechanical deformation and electrical generation.

    To understand how strain and defects shape electronic behavior, the researchers used density functional theory (DFT) calculations. Models of pristine, strained, and oxygen-deficient chromiteen showed clear charge redistribution, altered bond lengths, and localized electronic states near vacancies.

    These effects contribute to enhanced polarization and improved device performance under mechanical load.

    Mechanical testing showed that the composite film could stretch to several times its original length before breaking, with the 2D sheets reinforcing the TPU matrix.

    When submerged in saltwater for several days, the film retained its overall structural integrity, although electrical output dropped by roughly 35 % due to surface oxidation, indicating durability but not full corrosion immunity.

    Conclusion

    This work demonstrates how ultrathin chromiteen, supported by polymer encapsulation and inherently rich defect structures, can generate meaningful electrical output from real-world wave motion.

    While long-term saltwater exposure still affects performance, the combination of flexibility, atomic-scale responsiveness, and marine compatibility positions chromiteen-based devices as promising candidates for powering distributed ocean sensors and small marine electronics.

    Journal Reference

    Mathias R., et al. (2025). Strain-induced wave energy harvesting using atomically thin chromiteen. Nanoscale. DOI: 10.1039/d5nr04273a 



    Source link

    atomically Chromiteen energy Ocean Thin Turning waves
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Strain-Tuned 2D Materials with Sharper Detection of Toxic Gases

    December 27, 2025

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 27, 2025

    Machine perception liquid biopsy identifies brain tumours via systemic immune and tumour microenvironment signature

    December 26, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Santa Claus doesn’t exist (according to AI) • Graham Cluley

    December 28, 2025

    ios – Background Assets Framework server connection problem

    December 27, 2025

    FaZe Clan’s future is uncertain after influencers depart

    December 27, 2025

    Airbus prepares tender for European sovereign cloud

    December 27, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Santa Claus doesn’t exist (according to AI) • Graham Cluley

    December 28, 2025

    ios – Background Assets Framework server connection problem

    December 27, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.