Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Inside the Birthplace of Your Favorite Technology

    February 22, 2026

    Arkanix Stealer pops up as short-lived AI info-stealer experiment

    February 22, 2026

    Twelve-inch electrically anisotropic boridene for optoelectronic computing

    February 22, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Twelve-inch electrically anisotropic boridene for optoelectronic computing
    Nanotechnology

    Twelve-inch electrically anisotropic boridene for optoelectronic computing

    big tee tech hubBy big tee tech hubFebruary 22, 2026007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Twelve-inch electrically anisotropic boridene for optoelectronic computing
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Wan, T., Ma, S. & Chai, Y. Multidimensional vision sensors for information processing. Nat. Nanotechnol. 19, 919–930 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. A reconfigurable heterostructure transistor array for monocular 3D parallax reconstruction. Nat. Electron. 8, 46–55 (2025).

    Article 

    Google Scholar
     

  • Wang, C. Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pi, L. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 5, 248–254 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jang, H. et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. et al. Reconfigurable, non-volatile neuromorphic photovoltaics. Nat. Nanotechnol. 18, 1303–1310 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J.-S. et al. Addressing interconnect challenges for enhanced computing performance. Science 386, eadk6189 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. Boridene: two-dimensional Mo4/3B2–x with ordered metal vacancies obtained by chemical exfoliation. Science 373, 801–805 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Metal telluride nanosheets by scalable solid lithiation and exfoliation. Nature 628, 313–319 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siao, M. D. et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 9, 1442 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).

    Article 

    Google Scholar
     

  • Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, S. et al. Monolithic and heterogeneous three-dimensional integration of two-dimensional materials with high-density vias. Nat. Electron. 7, 892–903 (2024).

    Article 

    Google Scholar
     

  • Kwon, J. et al. 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nat. Electron. 7, 356–364 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K. S. et al. Growth-based monolithic 3D integration of single-crystal 2D semiconductors. Nature 636, 615–621 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, D. et al. Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 630, 340–345 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 22, 1324–1331 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, Y. A. et al. Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina. Nat. Electron. 6, 443–450 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, G. et al. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv. 6, eaba5029 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Ultraflat single-crystal hexagonal boron nitride for wafer-scale integration of a 2D-compatible high-kappa metal gate. Nat. Mater. 23, 1495–1501 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, S. H. et al. Epitaxial single-crystal growth of transition metal dichalcogenide monolayers via the atomic sawtooth Au surface. Adv. Mater. 33, e2006601 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, J. H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoudi, A. et al. Stacking order and electronic band structure in MBE-grown trilayer WSe2 films. Phys. Rev. B 109, 115437 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, R. et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5, 497–504 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, Y. et al. Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration. Nat. Synth. 1, 701–708 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, D. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 12, 5 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Y. et al. Precise p-type and n-type doping of two-dimensional semiconductors for monolithic integrated circuits. Nat. Commun. 15, 9631 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. J. et al. Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing. Nat. Nanotechnol. 20, 83–92 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Dodda, A. et al. Stochastic resonance in MoS2 photodetector. Nat. Commun. 11, 4406 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren, E., Knoll, A. W., Lortscher, E. & Duerig, U. Direct experimental observation of stacking fault scattering in highly oriented pyrolytic graphite meso-structures. Nat. Commun. 5, 5837 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, G. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, S. et al. A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors. Sci. Adv. 8, eabn9328 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, J. et al. Solution-processed wafer-scale indium selenide semiconductor thin films with high mobilities. Nat. Electron. 8, 244–253 (2025).

    Article 

    Google Scholar
     

  • Tang, B. et al. Solution-processable 2D materials for monolithic 3D memory-sensing-computing platforms: opportunities and challenges. npj 2D Mater. Appl. 8, 74 (2024).

    Article 

    Google Scholar
     

  • Yeon, H. et al. Alloying conducting channels for reliable neuromorphic computing. Nat. Nanotechnol. 15, 574–579 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 

    Google Scholar
     



  • Source link

    anisotropic boridene computing Electrically Optoelectronic Twelveinch
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    How a Single Parameter Reveals the Hidden Memory of Glass – Physics World

    February 22, 2026

    A Breakthrough in S. aureus Diagnostics

    February 21, 2026

    Nonlinear Geometric Phase Control via High-Q Quasi-BIC Resonance in All-Dielectric Metasurfaces

    February 20, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Inside the Birthplace of Your Favorite Technology

    February 22, 2026

    Arkanix Stealer pops up as short-lived AI info-stealer experiment

    February 22, 2026

    Twelve-inch electrically anisotropic boridene for optoelectronic computing

    February 22, 2026

    Industrial IoT projects under review

    February 22, 2026
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Inside the Birthplace of Your Favorite Technology

    February 22, 2026

    Arkanix Stealer pops up as short-lived AI info-stealer experiment

    February 22, 2026

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2026 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.